دانسجاه آزاد اسلامی واحد سریز نام درس: داده کاوی نام اساد: دکتر مسعود کارکر

Roadmap

- Frequent Itemset Mining Problem
- Closed itemset, Maximal itemset
- Apriori Algorithm
- FP-Growth: itemset mining without candidate generation
- Association Rule Mining

درس : داده کاوی

Case 1: D.E.Shaw & Co.

- D. E. Shaw & Co. is a New York-based investment and technology development firm. By Columbia Uni. CS faculty.
 - manages approximately US \$35 billion in aggregate capital
 - known for its quantitative investment strategies, particularly statistical arbitrage
 - arbitrage is the practice of taking advantage of a price differential between two or more markets
 - statistical arbitrage is a heavily quantitative and computational approach to equity trading. It involves data mining and statistical methods, as well as automated trading systems

درس : داده کاوی

StatArb, the trading strategy

- StatArb evolved out of the simpler pairs trade strategy, in which stocks are put into pairs by fundamental or market-based similarities.
- When one stock in a pair outperforms the other, the poorer performing stock is bought long with the expectation that it will climb towards its outperforming partner, the other is sold short.

Example: PetroChina SHI

CEO

http://en.wikipedia.org/wiki/Statistical_arbitrage

StatArb, the trading strategy

- StatArb considers not pairs of stocks but a portfolio of a hundred or more stocks (some long, some short) that are carefully matched by sector and region to eliminate exposure to beta and other risk factors
- Q: How can u find those matched/associated stocks?
- A: Frequent Itemset Mining ©

Transaction records:

$$S1\uparrow S2\downarrow S3\downarrow S4\uparrow$$

 $S1\uparrow S2\downarrow S3\uparrow S4\uparrow$
 $S1\downarrow S2\uparrow S3\downarrow S4\downarrow$
 $S1\uparrow S2\downarrow S3\uparrow S4\uparrow$
 $S1\uparrow S2\downarrow S3\uparrow S4\uparrow$
Buy S1

درس : داده کاوی

Case 2: The Market Basket Problem

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
\{Diaper\} \rightarrow \{Beer\},\
\{Milk, Bread\} \rightarrow \{Eggs, Coke\},\
\{Beer, Bread\} \rightarrow \{Milk\},\
```

Implication means co-occurrence, not causality!

- What products were often purchased together?— Beer and diapers?!
- What are the subsequent purchases after buying a PC?
- Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis

What Is Frequent Pattern **Analysis?**

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- **Applications**
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

درس : داده کاوی

Why Is Freq. Pattern Mining **Important?**

- Discloses an intrinsic and important property of data sets
- Forms the foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: associative classification
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - **Broad applications**

درس : داده کاوی

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Another Format to View the Transaction Data

- Representation of Database
 - horizontal vs vertical data layout

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E 💸
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Е
1	1	2	2	1,8
4	2	3	2 4 5	3
4 5 6 7 8 9	5	4 8 9	5 🔬	6
6 🦠	7	8	9	
7	8 10	9		
8	10	R		
9	٥	S.A.K.		QG AR

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{1}{100} + \binom{1}{100} + \binom{2}{100} + ... + \binom{1}{100} +$ $\binom{1000}{100} = 2^{100} - 1 = 1.27*10^{30}$ sub-patterns!
 - (A, B, C)6 frequent → (A, B) 7, (A, C)6, ...also frequent
- Solution: Mine closed patterns and max-patterns instead
 - Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Maximal Frequent

An itemset is maximal frequent if none of its immediate supersets is

Closed Itemset

An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	$\{A,B,D\}$
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
⟨ ⟨C⟩	3
{D}	26 M 4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
{A,B,D}	3
$\{A,C,D\}$	2
(B,C,D)	3
{A,B,C,D}	2

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Closed Patterns and Max-Patterns

- Exercise. DB = {<a₁, ..., a₁₀₀>, < a₁, ..., a₅₀>}
 - $-Min_sup = 1.$
- What is the set of closed itemset?
 - <a₁, ..., a₁₀₀>: 1
 - < a₁, ..., a₅₀>: 2
- What is the set of max-pattern?
 - $< a_1, ..., a_{100} > : 1$
- What is the set of all patterns?

Maximal vs Closed Itemsets

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation-and-Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 C_{I} $1^{\text{st}} \text{ scan}$

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_{I}	{A}	11:2
ROME	{B}	3
→	{C}	3
	{E}	3

 Itemset
 sup

 {A, C}
 2

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

 C_2 2^{nd} scan

Itemset	
(A, B)	
{A, C}	
{A, E}	
{B, C}	
{B, E}	
(C, E)	

 C_3 Itemset {B, C, E}

 3^{rd} scan L_3

Itemset	sup
{B, C, E}	2

The Apriori Algorithm

Pseudo-code:

```
C_k: Candidate itemset of size k
L_k: frequent itemset of size k
```

```
L_1 = \{ frequent items \};
for (k = 1; L_k != \emptyset; k++) do begin
   C_{k+1} = candidates generated from L_k;
  for each transaction t in database do
          increment the count of all candidates in C_{k+1}
     that are contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return \cup_k L_k;
```

Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - We cannot join ace and bcd –to get 4-itemset
 - Pruning:
 - acde is removed because ade is not in L₃
 - $C_4=\{abcd\}$

How to Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1} insert into C_k select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$ from L_{k-1} p, L_{k-1} qwhere $p.item_1=q.item_1, ..., p.item_{k-2}=q.item_{k-2}, p.item_{k-1} < q.item_{k-1}$
- Step 2: pruning for all *itemsets c in C_k* do forall (k-1)-subsets s of c do if (s is not in L_{k-1}) then delete c from C_{k}

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Example: Store candidate itemsets into Hashtree

Example: Counting Supports of Candidates

درس: داده کاوی

Challenges of Frequent Pattern Mining

- Challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

درس : داده کاوی

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset $i_1i_2...i_{100}$
 - # of scans: 100
 - # of Candidates: $\binom{1}{100} + \binom{1}{100} + \dots + \binom{1}{100} \binom{0}{100} = 2^{100} 1 = 1.27 \times 10^{30}!$
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

Mining Frequent Patterns Without Candidate Generation

- Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc": DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

درس : داده کاوی

FP-growth Algorithm

Use a compressed representation of the database using an FP-tree

 Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

درس: داده کاوي

Construct FP-tree from a Transaction Database

<u>TID</u>	Items bought	(0
100	$\{f, a, c, d, g, i, m\}$	$\{p,p\}$
200	$\{a, b, c, f, l, m, a\}$	} \\
300	$\{b, f, h, j, o, w\}$	
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, \overline{l}, p, m\}$	$\{n, n\}$

- Scan DB once, find frequent 1itemset (single item pattern)
- Sort frequent items in frequency descending order, flist
- Scan DB again, construct FP-3. tree

FP-Tree Construction Example

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	${A,C,D,E}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	(A,B,D)
10	{B,C,E}

Transaction Database

Header table

Item	Pointer
Α	JB
B	
C	
D	
Е	

Pointers are used to assist frequent itemset generation

درس: داده کاوی

FP-growth

Conditional Pattern base for D:

Recursively apply FPgrowth on P

Frequent Itemsets found (with sup > 1): AD, BD, CD, ACD, BCD

encapsulated in this tree.

Benefits of the FP-tree Structure

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the count field)
 - For Connect-4 DB, compression ratio could be over 100

Why Is FP-Growth the Winner?

Divide-and-conquer:

- decompose both the mining task and DB according to the frequent patterns obtained so far
- leads to focused search of smaller databases
- Other factors
 - no candidate generation, no candidate test
 - compressed database: FP-tree structure
 - no repeated scan of entire database
 - basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

Implications of the Methodology

- Mining closed frequent itemsets and max-patterns
 - CLOSET (DMKD'00)
- Mining sequential patterns
 - FreeSpan (KDD'00), PrefixSpan (ICDE'01)
- Constraint-based mining of frequent patterns
 - Convertible constraints (KDD'00, ICDE'01)
- Computing iceberg data cubes with complex measures
 - H-tree and H-cubing algorithm (SIGMOD'01)

درس: داده کاوی

MaxMiner: Mining Max-patterns

- 1st scan: find frequent items
 - A, B, C, D, E
- 2nd scan: find support for
 - AB, AC, AD, AE, ABCDE

Tid	Items	
10	A,B,C,D,E	
20	B,C,D,E,	
30	A,C,D,F	

- BC, BD, BE, BCDE
- CD, CE, CDE, DE,

Potential max-patterns

- Since BCDE is a max-pattern, no need to check BCD, BDE, CDE in later scan
- R. Bayardo. Efficiently mining long patterns from databases. In SIGMOD'98

Roadmap

- Frequent Itemset Mining Problem
- Closed itemset, Maximal itemset
- Apriori Algorithm
- FP-Growth: itemset mining without candidate generation
- Association Rule Mining

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67$$

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
\{Milk, Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67)
\{Milk, Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0)
\{Diaper, Beer\} \rightarrow \{Milk\} (s=0.4, c=0.67)
\{Beer\} \rightarrow \{Milk, Diaper\} (s=0.4, c=0.67)
\{Diaper\} \rightarrow \{Milk, Beer\} (s=0.4, c=0.5)
\{Milk\} \rightarrow \{Diaper, Beer\} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Step 2: Rule Generation

- Given a frequent itemset L, find all non-empty subsets f \subset L such that f \rightarrow L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$
 - But confidence of rules generated from the same itemset has an anti-monotone property
 - e.g., $L = \{A,B,C,D\}$:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Rule Generation for Apriori **Algorithm**

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC

Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if $\{A,B,C\} \rightarrow \{D\}$ and $\{A,B\} \rightarrow \{D\}$ have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Ý	Y	MASE
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
97	f ₊₁	f ₊₀	solT[

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

f₀₁: support of X and Y

f₀₀: support of X and Y

Used to define various measures

support, confidence, lift, Gini,J-measure, etc.

Drawback of Confidence

	3		
Ar.		4),	11.
ŢŖ.	Coffee	Coffee	JR.
Tea	15	5	20
Tea	75	5	80
4	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75but P(Coffee) = 0.9

- ⇒ Although confidence is high, rule is misleading
- \Rightarrow P(Coffee|Tea) = 0.9375

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - $-P(S \land B) = P(S) \times P(B) => Statistical independence$
 - $P(S \land B) > P(S) \times P(B) => Positively correlated$
 - P(S∧B) < P(S) × P(B) => Negatively correlated

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift/Interest

		41	40
R	Coffee	Coffee	JR.
Tea	15	5	20
Tea	75	5	80
4	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Drawback of Lift & Interest

SR.IR	Υ	_{RI} Y	
X	10	0	10
X	0.00	90	90
	10	90	100

g. S	Y	Y	
X	90	MEDIE O	90
X	0 11120	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If
$$P(X,Y)=P(X)P(Y) => Lift = 1$$

There are lots of measures proposed in the literature

Some measures are good for certain applications, but not for others

What criteria should we use to determine whether a measure is good or bad?

What about Aprioristyle support based pruning? How does it affect these measures?

	#	Measure	Formula
	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\langle P(A)P(B)^{(1)},P(A)\rangle \langle P(B)\rangle}$
30	2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$ $\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$ $\frac{P(A, B)P(\overline{A}, \overline{B})}{2}$
	3	Odds ratio (α)	1 (A,B)1 (A,B)
	4	Yule's Q	$\frac{\overline{P(A,\overline{B})P(\overline{A},B)}}{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
		•	$ \begin{array}{c c} P(A,B)P(AB)+P(A,B)P(A,B) & \alpha+1 \\ \sqrt{P(A,B)P(\overline{AB})}-\sqrt{P(A,\overline{B})P(\overline{A},B)} & \sqrt{\alpha}-1 \end{array} $
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
	6	Kappa (κ)	$\frac{P(A,B)+P(A,B)-P(A)P(B)-P(A)P(B)}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
	7	Mutual Information (M)	$\frac{\stackrel{\bullet}{P(A,B)} + \stackrel{\bullet}{P(\overline{A},\overline{B})} - \stackrel{\bullet}{P(A)} \stackrel{\bullet}{P(B)} - \stackrel{\bullet}{P(\overline{A})} \stackrel{\bullet}{P(\overline{B})}}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})} \\ = \frac{\sum_{i} \sum_{j} P(A_{i},B_{j}) \log \frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}$
3.0	8	J-Measure (J)	$\max \left(P(A,B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}), \right)$
	٥	0-Medatic (0)	
			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
			$-P(B)^2-P(\overline{B})^2$,
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
_ `			$-P(A)^2-P(\overline{A})^2$
370	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
	15	cosine(IS)	$\frac{P(A,B)}{P(A)P(B)}$ $\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$
ه اح	لامر	_ , ,	درس: داده کاوی کیاستاد: دکترمس

Subjective Interestingness Measure

- Objective measure:
 - Rank patterns based on statistics computed from data
 - e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
 - Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
 - A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

Summary

- Frequent item set mining applications
- Apriori algorithm
- FP-growth algorithm
- Association mining
- Association Rule evaluation

قدرداني

- Dr. Jianjun Hu
 http://mleg.cse.sc.edu/edu/csce822/
- University of South Carolina
- Department of Computer Science and Engineering