2wl IPI)'/'T;& ly

Vi r/ SIS IS8T 3T rt o

¢

Alloy j.»U/‘yU ‘}’

ﬂf’ ;)/:)f/l (L.

CONTENTS

Signatures — Functions
Relations — Facts

Signature Multiplicity — Macros
Subtypes — Commands
Enums — run

Sets and Relations — check

Sets — Scopes
Relations — Modules
Expressions and Constraints — Simple Modules
Expressions — Parameterized Modules
Constraints — Creating Modules
Predicates and Functions

Predicates

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

Signatures

A sighature expresses a new type in your spec. It can be
anything you want. Here are some example signatures:

Time

State

File

Person

Msg

Palir

Alloy can generate models that have elements of each
signature, called atoms. Take the following spec:

sigA{}

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

Signatures

The following would be an example generated model:

A0 Al

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

Signatures

Here we have two atoms A$1 and A$0. Both count as instances of the A
signature. See visualizer for more on how to read the visualizations.

Usually we care about the relationships between the parts of our systems. We
don’t just care that there are people and cars, we care which people have which
cars. We do this by adding relations inside of the signature body.

sig Person {}
sig Car {}

sig Registration {
owner: Person,
car: Car

}

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

Signatures

This defines a new Registration type, where each
Registration has an owner, which is a Person, and a catrr,
which is a Car. The comma is required.

RegistrationO Registrationl
.."' .\'\\
;fowner car /ca r _owner
a / | \
y y X
. Personl Car Person0O
TIp

Extra commas are ignored. So you can write Registration instead like this:
sig Reqistration {

, owner: Person

, car: Car

}

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

Relations

The body of a signature is a list of relations, which show how the signatures
are connected to each other. A relation in the body of a signature is also
called a field.

Relations are separated by a comma. The list can also start and end with a
comma. Relations do not have to be on separate lines, as long as they are
separated by commas.

Relations can refer to the same signature. This is valid:

sig Node {
, edges: set Node

}

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

Relations

Nodel_*;::>edge

edge

Y
NodeO

).’).u d.>‘3 LSAMM‘Q‘)—‘ oli.i..;b)f)lfogm):;_fo R Vo)‘)3‘[9)4 (5....’&.».@40)O &) LSLQU"’B) : w)u)

Relations

Alloy can generate models where a relation points from an atom to itself, aka a
“self-loop”. For this reason we often want to add contraints to our model, such as
Facts or Predicates.

Note

Each relation in the body of a signature actually represents a relation type. If we
have:

sig A {r: one B}
Then r is set of relations in A -> B. See Sets and Relations for more information.

Different signatures may have relationships with the same name as long as the
relationship is not ambiguous.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 9

Multiplicity

Each relation has a multiplicity, which represents how many atoms it can
include. If you do not include a multiplicity, it's assumed to be one for individual
relations and set for Multi-relations.

one
The default. r: one A states that there is exactly one A in the set.

sig Key {}

sig Lock {
, key: one Key
}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 10

Multiplicity

This says that every lock has exactly one Key. This does not guarantee
a 1-1 correspondence! Two locks can share the same key.

Lockl

\f

Y
-

Lock(

ye

key

If no multiplicity is listed, Alloy assumes to be one. So the above
relation can also be written as key: Key.

ol GA)L»\QUT olZislo

S B g 5SS s sl

)‘)'-é‘ﬁ)-; (WP)OS (o) S g,y t)0

11

Multiplicity

lone
r. lone A states that either there is one A in the set, or that the set is empty.

You can also think of it as “optional”.

sig Directory {
, parent: lone Directory

}

This says that every directory either has one parent, or it does not have a
parent (it's a root directory).

Directory2

parent

Directoryl Directoryd

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

Multiplicity

set

. set A states that there can be any number of A in the relation.

sig User {}
sig Region {
servers: set User

}

Regionl

serd

S d>lg GA)L»\QUT olZislo S8 0ermn 25

SEemnvers senvers
servers
Userl User2 Regiond
st NRlp P e 55 ooy oy, i)0

13

Multiplicity

some
r: some A states that there is at least one A in the relation.

sig Author {}

sig Book {
by: some Author Boak(Boaok?2 Book1

}

Author! Author2 Authar(

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

Multiplicity

disj
disj can be prepended to any multiplicity to guarantee that it will be disjoint among
all atoms. If we write

sig Lock {}

sig Key {
lock: disj one Lock

}

Then every key will correspond to a different lock. If we instead write

sig Lock {}

sig Key {
locks: disj some Lock

}

Then every key will correspond to one or more locks, but no two keys will share a
lock.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 15

Field Expressions

A field can be a simple expression over other signatures.

sig Resource {
permissions: set (User + Group)
}
In addition to full signatures, the expression may contain this,
which refers to the specific atom itself.

sig Node {
-- no self loops
, edges: set Node - this

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 16

Field Expressions

A dependent field is one where the expression depends on the values
of other fields in the atom. The dependencies must be fields defined
either in the signature or its supertype.

sig Item {}
sig Person {

. favorite: Item
. second: Item - favorite

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 17

Multi-relations

Signatures can have multi-relations as fields:

sig Door {}
sig Card {}

sig Person {
access: Card -> Door

}

In this case access Is a ternary relationship, where each element of
access is a relation of form Person -> Card -> Door.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

18

Multi-relations

Multi-relations have a special kind of multiplicity:
rAm->nB

This says that each member of A is mapped to n
elements of B, and m elements of A map to each element
of B. If not specified, the multiplicities are assumed to be

set.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 19

Multi-relations

As an aid, use the following table:

m
set
set
set
set
some
some
some
some
one
one
one
one
lone
lone
lone
lone

n
set
some
one
lone
set
some
one
lone
set
some
one
lone
set
some
one
lone

Meaning

No restrictions

Each A used at least once

Each A is mapped to exactly one B (total function)

Each A is mapped to at most one B (partial function)

Each B mapped to at least once

Every A mapped from and every B mapped to

Each A used exactly once, each B used at least once

Each A used at most once, each B used at least once

Each B used exactly once, no other restrictions (one A can map to two B atoms)
Each B used exactly once, each A used at least once

Only satisfiable if #A = #B, bijection

At most #A arrows, exactly #B arrows, each A used at most once
Each B used at most once

Each A used at least once and each B used at most once

Each A used exactly once, each B used at most once

Each A used at most once, each B used at most once

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 20

Multi-relations

Not all multiplicities will have valid models. For example,

sig A {}

sig B {}

one sig C {
r-Aone->one B

}

run {} for exactly 3 A, exactly 2 B

Since r must be 1-1, and there’s different numbers of A and B sigs,
nothing satisfies this model.

Multi-relations can go higher than ternary using the same syntax, but
this is generally not recommended.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 21

Signature Multiplicity

In addition to having multiplicity relationships, we can put multiplicities
on the signatures themselves.

one sig Foo {}
some sig Bar {}
lletc

By default, signatures have multiplicity set, and there may be zero or
more in the model. By making the signature one, every model will have
exactly one atom of that signature. By writing some, there will be at
least one. By writing lone, there will be zero or one.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 22

Subtypes

We can make some signatures subtypes of other signatures.

In

Writing sig Child in Parent creates an inclusive subtype: any Parent
atoms may or may not also be a Child. This is also called a “subset
subtype”.

sig Machine {}
sig Broken in Machine {}

sig Online in Machine {}
In this case, any Machine can also be Broken, Online, both, or neither.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 23

Subtypes

+

A single inclusive subtype can be defined for many parent
signatures. We can do this by using the set union
operator on the parent signatures.

sig Bill, Client {}

sig Closed in Bill + Client {}

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

24

Subtypes

extends

Writing sig Child extends Parent creates a subtype, as with in. Unlike in,
though, any Parent atom can only match up to one extension.

sig Machine {}

sig Server extends Machine {}
sig Client extends Machine {}

In this case, any Machine can also be a Server, a Client, or neither, but
not both.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 25

Subtypes

Something can belong to both extend and in subtypes.

sig Machine {}
sig Broken in Machine {}

sig Server extends Machine {}
sig Client extends Machine {}

A Machine can be both a Server and Broken, or a Client and Broken, or
just one of the three, or none at all.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 26

Subtypes

abstract

If you make a signature abstract, then all atoms of the
signature will belong to extensions. There will be no
atoms that are just the supertype and not any of the
subtypes.

abstract sig Machine {}
sig Broken in Machine {}

sig Server extends Machine {}

sig Client extends Machine {}

Here any machine must be either a Server or a Client.
They still may or may not be Broken.

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

27

Subtypes

Warning

If there is nothing extending an abstract signature, the abstract is
ignored.

Tip
You can place multiple signatures on the same line.

sig Server, Client extends Machine {}

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

28

Subtypes and Relationships

All subtypes are also their parent type. So if we have

sig B {}
sig Cin B {}

sig A{
. b:B
,C: C
}

Then the b relation can map to atoms of C, and ¢ cannot map to
elements of B that are not also in C.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

29

Subtypes and Relationships

Tip

If you want to map to elements of B that are not also in C, you can
write:

sig A{
,b:B-C
}

).’).u d.>‘3 LSAMM‘Q‘)—‘ oli.i..;b)f)lfogm):;_fo R Vo)‘)3‘[9)4 (5....’&.».@40)O &) LSLQU"’B) : w)u)

30

Child Relations

Children automatically inherit all of their Parent fields, and also can
define their own fields. We can have:

sig Person {}
sig Account {
, person: Person

}

sig PremiumAccount in Account {
, billing: Person
}
Then all Account atoms will have the person field, while all
PremiumAccount atoms will have both a person field and a billing field.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 31

Child Relations

Note

This also applies to Implicit Facts. If Account has an implicit fact, it
automatically applies to PremiumAccount.

It is not possible redefine a relationship, only to add additional ones.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 32

Enums

Enums are a special signature.
enum Time {Morning, Noon, Night}

The enum will always have the defined atoms in it. Additionally,
the atom will have an ordering. In this case, Morning will be the
first element, Noon the second, and Night will be the third. You
can use enums in facts and predicates, but you cannot add
additional properties to them.

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

33

Enums

Tip

If you want to use an enumeration with properties, you can emulate this by
using one and signature extensions.

abstract sig Time {}

one sig Morning, Noon, Night extends Time {
time: Time
}

You can also use this to make enumerations without a fixed number of
elements, by using lone instead.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 34

Enums

Warning

Each enum implicitly imports ordering. The following is invalid:
enum A {a}

enum B {b}

run {some first}

As it is ambiguous whether first should return a or b. If you need to

use both an enum inside of a dynamic model, be sure to use a
namespace when importing ordering.

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

35

Sets and Relations

s dly oDl olKasls

S B g 5SS s sl

dle 5 (i ;o (comy Sl byt)0

36

Sets

A set is a collection of unique, unordered elements. All Alloy expressions
use sets of atoms and Relations. All elements of a set must all be either
atoms, relations, or multi relations of the same arity, but may be different
types of each category.

In expressions, the name of the signature is equal to the set of all atoms in
that signature. The same is true for signature fields. Given

sig Teacher {}
sig Student {
teacher: Teacher

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 37

Sets

Then the spec recognizes Student as the set of all atoms of type Student, and
likewise with the Teacher signature and the teacher relationship.

Everything in Alloy is a set. If S1 is a Student atom, then S1 is the set containing
just S1 as an element.

There are also two special sets:

none is just the empty set. Saying no Set is the same as saying Set = none. See
Expressions.

univ is the set of all atoms in the model. In this example, univ = Student +
Teacher.

Note

By default, the analyzer also generates a set of integers for each model, which
will appear in univ. This can almost always be ignored in specifications (but see #
below).

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 38

Set Operators

Set operators can be used to construct new sets from existing ones, for
use in expressions and predicates.

S1 + S2is the set of all elements in either S1 or S2 (set union).

S1 - S2is the set of all elements in S1 but not S2 (set difference).

S1 & S2is the set of all elements in both S1 and S2 (set intersection).
S1={A, B}

S2 ={B, C}

S1+S2={A, B, C}

S1-S2={A}
S1 & S2 = {B}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 39

-> used as an operator

Given two sets, Setl -> Set2 is the Cartesian product of the two: the set
of all relations that map any element of Setl to any element of Set2.

Setl = {A, B}
Set2 = {X, Y, Z}

Setl->Set2={A->X,A->Y,A->Z,B->X,B->Y,B->Z}

As with other operators, a standalone atom is the set containing that
atom. Sowe canwrite A-> (X+Y)toget(A->X+A->Y).

Tip
univ -> univ is the set of all possible relations in your model.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 40

Integers

Alloy has limited support for integers. To enforce bounded models, the
numerical range is finite. By default, Alloy uses models with 4-bit signed
integers: all integers between -8 and 7. If an arithmetic operation would
cause this to overflow, then the predicate is automatically declared false.
In the Evaluator, however, it will wrap the overflowed number.

Tip

The numerical range can be changed by placing a scope on Int. The
number of the scope is the number of bits in the sighed integers. For

example, if the scope is 5 Int, the model will have all integers between -
16 and 15.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 41

Integers

All arithmetic operators are over the given model’s numeric range. To
avoid conflict with set and relation operators, the arithmetic operators
are written as Functions:

add[1, 2]

sub[1, 2]

mul[l1, 2]

div[3, 2] -- integer divison, drop remainder
rem[l, 2] -- remainder

#
#S Is the number of elements in S.

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

42

Integers

You can use receiver syntax for this, and write add[1, 2] as 1.add[2]. There are
also the following comparison predicates:

1=<2

1<2

1>2

1>=2

11=2

1=2

As there are no corresponding symbols for elements to overload, these
operators are written as infixes.

Warning

Sets of integers have non-intuitive properties and should be used with care.

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

43

Sets of numbers

For set operations, a set of numbers are treated as a set. For
arithmetic operations, however, a set of numbers is first summed
before applying the operator. This is equivalent to using the sumf]
function.

(1+2)>=3--true
(1+2)<=3--true
(1+2)=3 --false

(1 + 2).plus[0] = 3 -- true
(1 + 1).plus[0] = 2 -- false

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

44

Relations

Given the following spec

sig Group {}
sig User {

belongs_to: set Group
}
belongs_to describes a relation between User and Group. Each individual
relation consists of a pair of atoms, the first being User, the second being
Group. We write an individual relation with ->. One possible model might
have

belongs to ={
Ul->G1l+
Uz ->G1+
Uz ->G2

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 45

Relations

Relations do not need to be 1-1: here two users map to G1 and one
user maps to both G1 and G2.

Ul Uz

/ belongs_to
belofgs o
| belongs_to
1

1
Gl G2

Relations in Alloy are first class objects, and can be manipulated and
used in expressions. [This assumes you already know the set
operations]. For example, we can reverse a relation by adding ~ before
It:

~belongs to ={
Gl->Ul+
Gl->U2+
G2 -> U2

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 46

The . Operator

The dot (.) operator is the most common relationship operator, and has several
different uses. The dot operator is left-binding: a.b.c is parsed as (a.b).c, not
a.(b.c).

Set.rel
If Set is an individual atom, this returns all elements that said atom maps to. If
Set is more than one atom, this gets all elements they map to.

Ul.belongs to = G1
(Ul + U2).belongs to = {G1, G2}

Tip

In this case, we can find all groups in the relation with User.belongs_to. However,
some relations may mix different types of atoms. In that case univ.~rel is the
domain of rel and univ.rel is the range of rel.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 47

The . Operator

For Multirelations, this will return the “tail” of the relation.
Egifrel=A->B ->C, thenA.rel=B ->C.

rel.Set
Writing rel.Set is equivalent to writing Set.~rel. See ~rel.

belongs to.G1 ={U1, U2}
G1l.~belongs to ={U1, U2}

rell.rel2

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

48

The . Operator

We can use the dot operator with two relations. It returns the inner product
of the two relations. For example, given

rell ={A->B, B->A}
rel2={B->C, B->D, A->E}

rellrel2={ A->C, A->D, B->E}

In our case with Users and Groups, belongs_to.~belongs to maps every
User to every other user that shares a group.

Note

The operator isn’t overloaded; it's the same operator with the same semantics for
both Set.rel and rell.rel2.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 49

1

rel[elem] is equivalent to writing elem.(rel). It has a lower
precedence than the . operator, which makes it useful for
Multirelations. If we have

sig Light {
state: Color -> Time

}

Then L.state[C] would be all of the times T where the light
L was color C. The equivalent without [] would be
C.(L.state).

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

50

iden

iden is the relationship mapping every element to itself. If
we have an element a in our model, then (a -> a) in iden.

An example of iden’s usefulness: if we want to say that rel
doesn’t have any cycles, we can say no iden & “rel.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 51

Additional Operators

Note
You cannot use ~, ©, or * with higher-arity relations.

~rel
As mentioned, ~rel is the reverse of rel.

Nand *
These are the transitive closure relationships. Take the following
example:

sig Node {
edge: set Node

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 52

Additional Operators

N.edge is the set of all nodes that N connects to.
N.edge.edge is the set of all nodes that an edge of N connects to.
N.edge.edge.edge is the set of all nodes that are an edge of an edge of

N, ad infinitum.

If we want every node that is connected to N, this is called the transitive
closure and is written as N.”*edge.

" does not include the original atom unless it’s transitively reachable! In
the above example, N in N.”edge iff the graph has a cycle containing N.

If we want to also include N, use N.*edge instead.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 53

Additional Operators

 operates on the relationship, so “edge is also itself a relationship
and can be manipulated like any other. We can write both ~*edge
and "~edge.

It also works on arbitrary relationships.
Ul.~belongs_to.~belongs_to) is the set of people that share a

group with U1, or share a group with people who share a group
with U1, ad infinitum.

Warning

By itself *edge will include iden! *edge = ~edge + iden. For best results
only use * immediately before joining the closure with another set.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 54

Advanced Operators

<:and :>

<: i1s domain restriction. Set <: rel is all of the elements in rel that start with an
element in Set. :> is the range restriction, and works similarly: rel :> Set is all the
elements of rel that end with an element in Set.

This is mostly useful for directly manipulating relations. For example, given a set
S, we can map every element to itself by doing S <: iden. We can also use
restrictions to disambiguate overloaded fields. If we have

abstract sig Node {
, edges: set Node

}

some sig Red, Blue extends Node {}
Then Blue <: edges :> Red is the set of all edges from Blue nodes to Red ones.

s aly olulolT olKisls 5 o gnane 258 ol 58l 5 wdige 0 cowy S SEg, 1 ey 99

Advanced Operators

++

rell ++ rel2 is the union of the two relations, with one exception: if any relations
in rell that share a “key” with a relation in rel2 are dropped. Think of it like
merging two dictionaries.

Formally speaking, we have

rell ++ rel2 = rell - (rel2.univ <: rell) + rel2
Some examples of ++:

A->B+A>C)++(A->A)=(A->A)
A>B+A>C)++(A>A+A>C)=(A->A+A->C)
(A->B+A>C)++(C->A)=(A>B+A->C+C->A)
(A>B+B->C)++(A->A)=(A>A+B->0C)

It's mostly useful for modeling Time.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 56

Advanced Operators

Note

When using multirelations the two relations need the same arity,
and it overrides based on only the first element in the relations.

s aly olulolT olKisls 5 o gnane 258 ol 58l 5 wdige 0 cowy S SEg, 1 ey o7

Set Comprehensions

Set comprehensions are written as

{x: Setl | expr[x]}

The expression evaluates to the set of all elements of Setl
where expr[x] is true. expr can be any expression and may
be inline. Set comprehensions can be used anywhere a set
or set expression is valid.

Set comprehensions can use multiple inputs.

{x: Setl, y: Set2, ... | expr[x,y]}
In this case this comprehension will return relations in Setl
-> Set2.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 58

Expressions and Constraints

JERSERNCE GA)L»\Q‘)'W olZislo

S50 gre i8S 1 ol

le 5 (cwdipe ;0 (comoy Sl g,)0

59

Expressions and Constraints

Expressions are anything that returns a number, Boolean,
or set. Boolean expressions are also called Constraints.

Information about relational expressions are found in the
Sets and Relations chapters. There are two additional
constructs that can be used with both boolean and
relational expressions.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 60

Let

let defines a local value for the purposes of the subexpression.

letx=A+B,y=C+D|
X+y

In the context of the let expression x +y = (A+ B) + (C + D). let is mostly used to
simplify complex expressions and give meaningful names to intermediate
computations.

If writing a boolean expression, you may use a {} instead of |.

let bindings are not recursive. A let binding may not refer to itself or a future let
binding.

Tip: As with predicate parameters, let can shadow a global value. You can
use the @ operator to retrieve the global value.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 61

implies - else

When used in conjunction with else, implies acts as a
conditional. p implies A else B returns Aif p is true and B if
p is false. p must be a boolean expression.

If A and B are boolean expressions, then this acts as a
constraint. The else can be left out if using implies as a
constraint.

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

62

Constraints
Bar expressions

A bar expression is one of the form:

some Xx: Set |
expr

In this context, the expression is true iff expr is true. The newline is
optional.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

63

Constraints
Paragraph expressions

If multiple constraints are surrounded with braces, they are all
and-ed together. The following two are equivalent:

exprl or {
expr2
expr3

}

exprl or (expr2 and expr3 and ...)

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

64

Constraint Types

All constraints can be inverted with not or !. To say that A
IS not a subset of B, you can write

Alin B,
A not in B,
I(Ain B), etc.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

65

Relation Constraints

A = B means that both sets of atoms or relations have the exact
same elements. = cannot be used to compare two booleans.
Use iff instead.

N

A in B means that every element of A is also an element of B.
This is also known as a “subset” relation.

X In A means that x is an element of the set A.

Note

The above two definitions are equivalent as all atoms are singleton sets: x

IS the set containing X, so x in A is “the set containing just x is a subset of A”.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 66

size constraints

There are four constraints on the number of elements in a set:

no A means A is empty.

some A means A has at least one element.

one A means A has exactly one element.

lone A means A is either empty or has exactly one element.

In practice, no and some are considerably more useful than one and
lone.

Note
Relations are each exactly one element, no matter the order of

the relation. If a, b, and c are individual atoms, (a->b ->c) is
exactly one element, while (a -> b) + (a -> c) is two.

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

67

size constraints

disj[A, B]

disj[A, B] is the predicate “A and B share no elements in
common”.

Any number of arguments can be used, in which case

disj is pairwise-disjoint. This means that disj[A, B, C] is
equivalent to disj[A, B] and disj[B, C] and disj[A, C].

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 68

Boolean Constraints

Boolean constraints operate on Booleans or predicates.
They can be used to create more complex constraints.

All Boolean constraints have two different forms, a
symbolic form and an English form. For example, A && B
can also be written A and B.

word symbol
and &&

or |

not !
Implies =>

Iff <=>

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 69

Boolean Constraints

The first three are self-explanatory. The other two are covered below:

implies (=>)
P implies Q is true if Q is true whenever P is true. If P is true and Q is false, then P

implies Q is false. If P is false, then P implies Q is automatically true. P implies Q else T
is true if P and Q are true or if P is false and T is true.

(Consider the statement x > 5 implies x > 3.
If we pick x = 4, then we have false implies true).

iff (<=>)
P iff Q is true if P and Q are both true or both false. Use this for booleans instead of =.

Tip
XOr[A, B] can be written as A <=> IB.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 70

Quantifiers

A quantifier is an expression about the elements of a set. All of them have
the form

some Xx: A |
expr

This expression is true if expr is true for any element of the set of atoms A.
As with let, x becomes a valid identifier in the body of the constraint.

Instead of using a pipe, you can also write it as
some Xx: Set {

exprl

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 71

Quantifiers

In which case it is treated as a standard paragraph expression.
The following quantifiers are available:

some x: A | expr is true for at least one element in A.

all x: A | expr is true for every element in A.

no x: A | expr is false for every element of A.

[A] one x: A | expr is true for exactly one element of A.

[A] lone x: Ais equivalent to (one x: A | expr) or (no x: A | expr).

As discussed below, one and lone can have some unintuitive consequences.

Tip
As with all constraints, A can be any set expression. So you can write some X:
(A+ B -C).rel, etc.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 72

Multiple Quantifiers

There are two syntaxes to quantify over multiple elements:

-1
some X, Y, A| expr

-2
some X: A, y: B, ... | expr

For case (1) all elements will be drawn from A. For case (2) the quantifier will
be over all possible combinations of elements from A and B. The two forms
can be combined, as in all x, y: A, z: B, ... | expr.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 73

Multiple Quantifiers

Elements drawn do not need to be distinct. This means,
for example, that the following is automatically false if A
has any elements:

all x, y: Al
x.rel I=y.rel

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 74

Multiple Quantifiers

As we can pick the same element for x and y. If this is not your intention, there
are two ways to fix this:

-1
all x, y: Al
X =y =>x.rel l=y.rel

-2
all disj x, y: A |
x.rel 1= vy.rel

For case (1) we can still select the same element for x and y; however, the x 1=y
clause will be false, making the whole clause true. For case (2), using disj in a
guantifier means we cannot select the same element for two variables.

s aly olulolT olKisls 5 o gnane 258 ol 58l 5 wdige 0 cowy S SEg, 1 ey 75

Multiple Quantifiers

one and lone behave unintuitively when used in multiple
guantifiers. The following two statements are different:

onef, g. S| PIf, g] -1

onef: S|oneqg: S| P[f, d] - 2

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

76

Multiple Quantifiers

Constraint (1) is only true if there is exactly one pair f, g that satisfies
predicate P. Constraint (2) says that there’s exactly one f such that there’s
exactly one g. The following truth table will satisfy clause (2) but not (1):

f g P[f, g]
A B T
A C T
B A T
B C T
C B T
C A F

As C is the only one where there is exactly one g that satisfies P[C, g]. As a
rule of thumb, use only some and all when writing multiple clauses.

s aly olulolT olKisls 5 o gnane 258 ol 58l 5 wdige 0 cowy S SEg, 1 ey 77

Relational Quantifiers

When using a run command, you can define a some guantifier over a
relation:

sig Node {
edge: set Node
}

pred has_self loop {
some e: edge | e = ~e

}

run {
has_self loop

}

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

78

Relational Quantifiers

When using a check command, you can define all and no quantifiers
over relations:

assert no_self loops {
noe:edge|e=-~e

}

check no_self loops

You cannot use all or no in a run command or use some in a check
command. You cannot use higher-order quantifiers in the Evaluator
regardless of the command.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

79

Predicates and Functions

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 80

Predicates and Functions

Predicates
A predicate is like a programming function that returns a boolean. While they

are a special case of Alloy functions, they are more fundamental to modeling
and addressed first.

Predicates take the form

pred name {
constraint

}

Note:Predicates and functions cannot, in the general case, be recursive. Limited
recursion is possible,

T qe - c oo . 81
o d>lg cdulolyl o Kisls S50 gre 2SS 1 sl J3Ble 5w ;0 coms, Gl by, Ly

https://alloy.readthedocs.io/en/latest/language/expressions-and-constraints.html#constraints

Predicate sample

sigA{}

pred at_least one_a {
some A

}

pred more_than one a/{
at_least one a and not one A

}

run more_than one _a

3 axlg GA)L»\QUT olZislo 355 0 gm0 550 1 ol

Bley (owdige ;0 (comy o sbg; ()0

82

Predicate Parameters

Predicates can also take arguments.
pred foo[a: Setl, b: Set2...] {

expr

}

The predicate is called with foo[x, y], using brackets, not parents.

In the body of the predicate, a and b would have the corresponding values.

T e _ : . 83
o d>lg cdulolyl o Kisls S50 gre 2SS 1 sl S38le 5 cwdige 10 comy SlB gy o

Predicate
Receiver Syntax

The initial argument to a predicate can be passed in via a . join. The
following two are equivalent:

pred[x, Y, Z]
X.pred[y, z]

T 1es c s , 84
o d>lg cdulolyl o Kisls S50 gre 2SS 1 sl J3Ble 5w ;0 coms, Gl by, Ly

Functions

Alloy functions have the same structure as predicates but also return a
value.

Unlike functions in programming languages, they are always
executed within an execution run, so their results are available in the
visualization and the evaluator even if you haven’t called them
directly.

This is very useful for some visualizations, although the supporting
code can be disorienting when transitioning from “regular”
programming languages.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 85

Functions

fun namela: Setl, b: Set2]: output_type {
expression

}

If a function is constant (does not take any parameters), the analyzer
casts it to a constant set. This means if we have a function of

parameter

fun foo: A->B{
expression

}

Then 7Moo is a valid expression.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

86

Predicates and functions
Overiloading

Predicates and functions may be overloaded, as long as it’s
unambiguous which function applies. The following is valid:

sig A {}

sig B {}

pred foo[a: A] { -1
ainA

}

pred foo[b: B] { -2

binB
}

run {some a: A | foo[a]}

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

87

Predicates and functions
Overiloading

As when foo is called, it's unambiguous whether it means (1) or (2). If we instead
replaced sig B with sig B extends A, then it's ambiguous and the call is invalid.

Overloading can happen if you import the same parameterized module twice.For
example, given the following:

open util/ordering[A]
open util/ordering[B]

sig A, B {}
run {some first}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 88

Parameter Overrides

The parameters of a function (or predicate) can shadow a global
value. In this case, you can retrieve the original global value by using

@val.

sig A {}

pred f[A: univ, b: univ] {
binA -- function param
bin @A -- global signature

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 89

Facts

A fact has the same form as a global predicate:

fact name {
constraint

}
Tip

For facts, the name is optional. In addition, the name can be a string. So this is a
valid fact:

fact "no cycles" {
all n: Node | n not in n.”edge

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 90

Facts

A fact is always considered true by the Analyzer. Any models that would
violate the fact are discarded instead of checked.

This means that if a potential model both violates an assertion and a fact,
it is not considered a counterexample.

sigA{}

-- This has a counterexample
check {no A}

-- Unless we add this fact
fact {no A}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 91

Implicit Facts

You can write a fact as part of a signature. The implicit fact goes after
the signature definition and relations.

Inside of an implicit fact, you can get the current atom with this. Fields
are automatically expanded in the implicit fact to this.field.

sig Node {
edge: set Node

H

this not in edge

}

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

92

Implicit Facts

This means you cannot apply the relation to another atom of the same
signature inside the implicit fact. You can access the original relation by
using the @ operator:

-- undirected graphs only
sig Node {
, edge: set Node

}
{
all link: edge | this in link.edge -- invalid
all link: edge | this in link.@edge -- valid
}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 93

Macros

A macro is a similar to a predicate or function, except it is expanded
before runtime. For this reason, macros can be used as part of
signature fields. Parameters to macros also don’t need to be given

types, so can accept arbitrary signatures and even boolean constraints.
Macros are defined with let in the top scope.

let selfrel[Sig] = { Sig -> Sig }
let many[Sig] = { some Sig and not one Sig }

Sig A {
rel: selfrel[A]

}

run {many[A]}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 94

Commands

A command is what actually runs the analyzer. It can either find models
that satisfy your specification, or counterexamples to given properties.

By default, the analyzer will run the top command in the file. A specific
command can be run under the Execute menu option.

run
run tells the analyzer to find a matching example of the spec.

run pred

Find examples where pred is true. If no examples match, the analyzer
will suggest the predicate is inconsistent (see unsat core). The
predicate may be consistent if the scope is off.

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

95

sig Node {
edge: set Node

}

pred self loop[n: Node] {
nin n.edge

}

pred all_self loop {
all n: Node | self_loop[n]

}

run all_self loop

ol GA)L»\QUT olZislo

Commands

S B g 5SS s sl

dle 5 (i ;o (comy Sl byt)0

96

Commands

The analyzer will title the command as the predicate.

Executing "Run all_self loop"
Sig this/Node scope <= 3
Solver=minisatprover(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20
79 vars. 12 primary vars. 101 clauses. 4ms.
Instance found. Predicate is consistent. 5ms.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 97

Commands

run {constraint}
Finds an example satisfying the ad-hoc constraint in the braces.

// some node with a self loop
run {some n: Node | self_loop[n]}

Tip

The analyzer will title the command run${numj}. You can give the
command a name by prepending the run with name::

some_self loop: run {some n: Node | self loop[n]}

0 dly bl olBisls 5 S0 gra 1S ¢ Sl J58le 5 cwdige ;0 comy S Eg, 1 ey

98

Commands

check

check tells the Analyzer to find a counterexample to a given
constraint. You can use it to check that your specification behaves as
you expect it to.

Unlike with run commands, check uses assertions:

assert no_self loops {
no n: Node | self loop[n]

}

check no_self loops

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

99

Commands

Asserts may be used in check commands but not run commands.

Assertions may not be called by other predicates or assertions.

You can also call check with an ad-hoc constraint:

check {no n: Node | self loop[n]}

check can also be given a named command.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

100

Commands

Scopes

All alloy models are bounded: they must have a maximum possible
size. If not specified, the analyzer will assume that there may be up to
three of each top-level signature and any number of relations. This is
called the scope, and can be changed for each command.

Given the following spec:

sigA{}
sig B {}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 101

Commands

We can write the following scopes:

run {} for 5. Analyzer will look for models with up to five instances of each A
and B.

run {} for 5 but 2 A: Analyzer will look for models with up to two instances of
A

run {} for 5 but exactly 2 A: Analyzer will only look for models with exactly
two A. The exact scope may be higher than the general scope.

run {} for 5 but 2 A, 3 B: Places scopes on A and B.

If you are placing scopes on all of the signatures, the for N except is
unnecessary: the last command can be written as run {} for 2 A, 3 B.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 102

Commands
Tip

When using Arithmetic Operators, you can specify Int like any other
signature:

run foo for 3 Int

Note
You cannot place scopes on relations. Instead, use a predicate.

sig A{
rel: A
}

run {#rel = 2}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 103

Commands

Scopes on Subtypes
Special scopes may be placed on extensional subtypes. The following is valid:
sig Plant {}

sig Tree extends Plant {}
sig Grass extends Plant {}

run {} for 4 Plant, exactly 2 Tree

Grass does not need to be scoped, as it is considered part of Plant. The
maximum number of atoms for a subtype is either it or its parent’s scope,
whichever is lower. The parent scope is shared across all children. In this
command, there are a maximum of four Plants, exactly two of which will be Tree
atoms. Therefore there may be at most two Grass atoms.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 104

Commands

In contrast, special scopes may not be placed on subset types. The
following is invalid:

sig Plant {}

sig Seedling in Plant {}

run {} for 4 Plant, exactly 2 Seedling

Since Seedling is a subset type, it may not have a scope. If you need to

scope on a subtype, use a constraint:

run {#Seedling = 2} for 4 Plant

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 105

Modules

Modules
Alloy modules are similar to programming languages and act as the
namespaces. Alloy comes with a standard library of utility modules.

Simple Modules

open util/relation as r

Imports must be at the top of the file. Modules may import new
signatures into the spec.

Modules can be imported multiple times under different namespaces.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 106

Modules

Namespaces
A module can be namespaced by importing as a name. Namespaces
are accessed with /. This is also called a qualified import.

open util/relation as r

-- |ater

r/[dom

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 107

Modules

Parameterized Modules

A parameterized module is “generic”: its functions and predicates are
defined for some arbitrary signature. When you import a
parameterized module, you must pass in a signature. Its functions
and predicates are then specialized to be defined for that signature.

open util/ordering[A]

sigA{}

run {some first} -- returns an A atom

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 108

Modules

Normally ord/first returns an abstract elem. By parameterizing the
module with A, the function now returns an A atom.

The input must be a full signature and not a subset of one.

A parameterized module can be imported multiple times using
Namespaces.

Note

The following built-in modules are parameterized: ordering, time, graph,
and sequence.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 109

Modules

Creating Modules
The syntax for a module is

module name

At the beginning of the file.

Private

Any module predicate, function, and signature can be preceded by
private, which means it will not be imported into other modules.
module name

private sig A {}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 110

Modules

Creating Parameterized Modules

module name[sig]

-- predicates and functions should use sig

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 111

boolean

= Functions
graph

= Functions

= Predicates
iInteger

= Functions

= Predicates
naturals

= Functions

= Predicates

s dly oDl olKasls

Modules

ordering
* Functions
* Predicates
relation
* Functions
* Predicates
ternary
time
Macros

5 0gmne 2S5 1 sl NRlp P e 55 ooy oy, i)0

112

Modules - boolean

boolean

Emulates boolean variables by creating True and False atoms.

-- module definition
module util/boolean

abstract sig Bool {}
one sig True, False extends Bool {}

pred isTrue[b: Bool] { b in True }

pred isFalse[b: Bool] { b in False }
In our code:

S d>lg Go)l.w‘o‘)'T olZislo S8 0 gre 258 1 sl

)‘)'-é‘ﬁ)-; (WP)OS (o) S g,y t)0

113

Modules - boolean

In our code:

-- our code
open util/boolean

sig Account {
premium: Bool

}

Booleans created in this matter are not “true” booleans and cannot be
used as part of regular Constraints, IE you cannot do booll && bool2.
Instead you must use the dedicated boolean predicates, below. As such,
boolean should be considered a proof-of-concept and is generally not
recommended for use in production specs. You should instead represent
booleans using subtyping.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 114

Modules - boolean

Functions

All of the following have expected logic, but return Bool
atoms:

Not
And
Or
Xor
Nand
Nor

So to emulate booll && bool2, write booll.And[bool2].is
True.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 115

Modules - graph

Graph provides predicates on relations over a parameterized signature.
open util/graph[Node]

sig Node {
edge: set Node

}

run {
dag[edge]
}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 116

Modules - graph

Notice that graph is parameterized on the signature, but the predicate takes
In a relation. This is so that you can apply multiple predicates to multiple
different relations, or different subsets of the same relation. The graph
module uses some specific terminology:

This means that in a completely unconnected graph, every node is both a
root and a leaf.

Functions
funroots|r: node-> node]
Return type: set Node

Returns the set of nodes that are not connected to by any other node.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 17

Modules - graph

Warning

this is not the same meaning of root as in the rootedAt predicate! For
the predicate, a root is a node that transitively covers the whole graph.
Interally, util/graph uses rootedAt and not roots.

funleaves[r: node-> node]
Return type: set Node

Returns the set of nodes that do not connect to any other node.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 118

Modules - graph

Note

If r is empty, roots[r] = leaves|r] = Node. If r is undirected or contains
enough self loops, roots|[r] = leaves|r] = none.

fun innerNodes|[r: node-> node]
Returns: All nodes that aren’t leaves
Return type: set Node

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 19

Modules- graph

Predicates
pred undirected [r: node->node]
I IS symmetric.

pred noSelfLoops|r: node->node]
ris irreflexive.

pred weaklyConnected[r: node->node]

For any two nodes A and B, there is a path from A to B or a path
from B to A. The path may not necessarily be bidirectional.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 120

Modules- graph

pred stronglyConnected[r: node->node]
For any two nodes A and B, there is a path from Ato B and a
path from B to A.

pred rootedAt[r: node->node, root: node]
All nodes are reachable from root.

Warning

this is not the same meaning of root as in the roots function! For
the function, a root is a node no node connects to. Interally,
util/graph uses rootedAt and not roots.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

121

Modules- graph

pred ring [r: node->node]
r forms a single cycle.

pred dag [r: node->node]
ris a dag: there are no self-loops in the transitive closure.

pred forest [r: node->node]
ris a dag and every node has at most one parent.

pred tree [r: node->node]
r is a forest with a single root node.

pred treeRootedAt[r: node->node, root: node]
ris a tree with node root.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 122

Modules-integer

integer
Emulates integers.

A collection of utility functions for using Integers in Alloy. Note that
iInteger overflows are silently truncated to the current bitwidth using
the 2’s complement arithmetic, unless the “forbid overfows” option
IS turned on, in which case only models that do not have any
overflows are analyzed.

Warning

The main challenge with this module is the distinction between Int
and int.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 123

Modules-integer

Int is the set of integers that have been instantiated, whereas int returns the
value of an Int. You have to explicitly write int i to be able to add, subtract,

and compare ‘Int's.
open util/integers

fact ThreeExists { // there is some integer whose value is 3
some Xx:Int]|intx =3

}

fun add[a, b: Int]: Int {
{i Int|inti=Iinta+ intb}

}

run add for 10 but 3 int expect 1

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 124

Modules-integer

To try this module out, in Alloy Analyzer’s evaluator, you may also
iIssue the following commands (suppose that allow generated a set
with numbers ranging from -8 to 7):

1+3
4

/+1

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 125

Modules-integer

Functions

fun add [n1, n2: Int]
Return type: one Int
Returns n1 + n2.

fun plus [n1, n2: Int]
Return type: one Int
Returns n1 + n2.

fun sub [nl, n2: Int]

Return type: one Int
Returns nl - n2.

ol GA)L»\QUT olZislo

S B g 5SS s sl

fun minus [n1, n2: Int]
Return type: one Int
Returns nl - n2.

fun mul [n1, n2: Int]
Return type: one Int
Returns nl * n2.

fun div [n1, n2: Int]
Return type: one Int

)‘)'-é‘ﬁ)-; (WP)OS (o) S g,y t)0

126

Modules-integer

Returns the division with “round to zero” semantics, except the
following 3 cases:

ifais 0, thenitreturns 0

else if bis 0, then it returns 1 if a is negative and -1 if a is positive
else if a is the smallest negative integer, and b is -1, then it
returns a

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 127

Modules-integer

fun rem [n1, n2: Int]
Return type: one Int
Returns the unique integer that satisfies a = ((a/b)*b) + remainder.

fun negate [n: Int]
Return type: one Int
Returns the negation of n.

fun signum [n: Int]
Return type: one Int

Returns the signum of n (aka sign or sgn). In particular,n<0=>(0-1)
else (n>0=>1else0).

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 128

Modules-integer

fun int2elem [i: Int, next: univ->univ, s: set univ]

Return type: lone s

Returns the ith element (zero-based) from the set s in the ordering of next,
which is a linear ordering relation like that provided by util/ordering.

fun elem2int [e: univ, next: univ->univ]

Return type: lone Int

Returns the index of the element (zero-based) in the ordering of next, which
Is a linear ordering relation like that provided by util/ordering.

fun max
Return type: one Int
Returns the largest integer in the current bitwidth.

fun min
Return type: one Int
Returns the smallest integer in the current bitwidth.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 129

Modules-integer

fun next
Return type: Int -> Int
Maps each integer (except max) to the integer after it.

fun prev
Return type: Int -> Int

Maps each integer (except min) to the integer before it.

fun max [es: set Int]
Return type: lone Int
Given a set of integers, return the largest element.

fun min [es: set Int]
Return type: lone Int
Given a set of integers, return the smallest element.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

130

Modules-integer

fun prevs [e: Int]
Return type: set Int
Given an integer, return all integers prior to it.

fun nexts [e: Int]
Return type: set Int
Given an integer, return all integers following it.

fun larger [el, e2: Int]
Return type: Int
Returns the larger of the two integers.

fun smaller [el, e2: Int]
Return type: Int
Returns the smaller of the two integers.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 131

Modules-integer

Predicates pred zero [n: Int]

pred eq [nl, n2: Int] True iff n is equal to O.
True iff n1 is equal to n2.

pred pos [n: Int]
pred gt [n1, n2: In] True iff n is positive.
True iff nl is greater than n2.

pred neg [n: Int]

pred gte [n1, n2: Ini] True iff n is negative.
True iff n1 is greater than or equal to n2.

pred nonpos [n: Int]

pred It [n1, n2: In] True iff n is non-positive.
True Iff n1 is less than n2.

pred nonneg [n: Int]

pred Ite [n1, n2: In] True iff n is non-negative.
True iff n1 is less than or equal to n2.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 132

Modules - naturals

Emulates natural (non-negative) numbers.

This is an utility with functions and predicates for using the set of
nonnegative integers (0, 1, 2, .. .). The number of naturals present in
an analysis will be equal to the scope on Natural. Specifically, if the
scope on Natural is N, then the naturals 0 through N-1 will be present.

open util/natural

fun sum[a: Natural, b: Natural]: Natural {
{x:Natural | x = natural/add[a,b]}

}

run show for 3

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 133

Modules - naturals

To try this module out, in Alloy Analyzer’s evaluator, you may invoke the
function defined above as follows:

sum [natural/Naturall, natural/Naturall]
{natural/Natural$2}

sum [natural/Naturall, natural/Natural2]

U

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 134

Modules - naturals

Functions

fun inc [n: Natural]

Return type: one Natural
Returns n + 1.

fun dec [n: Natural]
Return type: one Natural
Returns n - 1.,

fun add [n1, n2: Natural]
Return type: one Natural
Returns nl + n2.

fun sub [n1, n2: Natural]
Return type: one Natural
Returns nl - n2.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

fun mul [n1, n2: Natural]
Return type: one Natural
Returns nl * n2.

fun div [n1, n2: Natural]
Return type: one Natural
Returns nl1/ n2.

fun max [ns: set Natural]
Return type: one Natural
Returns the maximum integer in ns.

fun min [ns: set Natural]
Return type: one Natural
Returns the minimum integer in ns.

135

Modules - naturals

Predicates

pred gt [n1, n2: Natural]
True iff n1 is greater than n2.

pred gte [n1, n2: Natural]
True iff n1 is greater than or equal to n2.

pred It [n1, n2: Natural]
True iff n1 is less than n2.

pred Ite [n1, n2: Natural]
True iff n1 is less than or equal to n2.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 136

Modules - ordering

Ordering places an ordering on the parameterized signature.
open util/ordering[A]

sigA{}

run {
some first -- first in ordering
some last -- last in ordering
first.It[last]
}
ordering can only be instantiated once per signature. You can, however, call
it for two different signatures:

open util/module[Thingl] as ul
open util/module[Thing2] as u2

sig Thingl {}
sig Thing2 {}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 137

Modules - ordering

Warning

ordering forces the signature to be exact. This means that the following
model has no instances:

open util/ordering[S]
sig S {}
run {#S = 2} for 3

In particular, be careful when using ordering as part of an assertion: the
assertion may pass because of the implicit constraint!

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 138

Modules - ordering

See also
Module time

Adds additional convenience macros for the most common use case of
ordering.
Sequences

For writing ordered relations vs placing top-level ordering on signatures.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 139

Modules - ordering

Functions

fun first

Returns: The first element of the ordering
Return type: elem

See Also: last

fun prev

Returntype: elem ->elem

See Also: next

Returns the relation mapping each element to its previous element.
This means it can be used as any other kind of relation:

fun is_first[e: elem] {
no e.prev

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 140

Modules - ordering

fun prevsle]

Returns: All elements before e, excluding e.
Return type: elem
See Also: nexts

fun smaller[el, e2: elem]
Returns: the element that comes first in the ordering
See Also: larger

fun min[es: set elem]

Returns: The smallest element in es, or the empty set if es is
empty

Return type: lone elem

See Also: max

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 141

Modules - ordering

Predicates

pred ltfel, e2: elem]

See Also: ot, Ite, gte
True iff el in prevs|e2].

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 142

Modules -relation

All functions and predicates in this module apply to any binary
relation. univ is the set of all atoms in the model.

Functions

fun dom([r: univ->univ]

Return type: set univ

Returns the domain of r. Equivalent to univ.~r.

fun ran[r: univ->univ]

Return type: set univ
Returns the range of r. Equivalent to univ.r.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

143

Modules -relation

Predicates
pred total[r: univ->univ, s: set]
True iff every element of s appears in dom(r].

pred functional[r: univ->univ, s: set univ]
True iff every element of s appears at most once in the left-relations of r.

pred function[r: univ->univ, s: set univ]
True iff every element of s appears exactly once in the left-relations of r.

pred surjective[r: univ->univ, s: set univ]
True iff s in ran]r].

pred injective[r: univ->univ, s: set univ]
True iff no two elements of dom[r] map to the same element in s.

s dly codllolsT oKl S8 0 gre 258 1 sl S38le 5 swdige 0 commy S gyt)

144

Modules -relation

pred bijective[r: univ->univ, s: set univ]

True iff every element of s is mapped to by exactly one relation inr. This is
equivalent to being both injective and surjective. There may be relations that map
to elements outside of s.

pred bijection[r: univ->univ, d, c: set univ]
True iff exactly r bijects d to c.

pred reflexive[r: univ -> univ, s: set univ]
r maps every element of s to itself.

pred irreflexive[r: univ -> univ]
r does not map any element to itself.

pred symmetric[r: univ -> univ]
A->Binrimplies B->Ainr

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 145

Modules -relation

pred antisymmetric[r: univ -> univ]
A -> B inrimplies B -> A notin r. This is stronger than not
symmetric: no subset of r can be symmetric either.

pred transitive[r: univ -> univ]
A->BinrandB->CinrimpliesA->Cinr

pred acyclic[r: univ->univ, s: set univ]
r has no cycles that have elements of s.

pred complete[r: univ->univ, s: univ]
all x,y:s | (XI=y =>x->y in (r + ~r))

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 146

Modules -relation

pred preorder[r: univ -> univ, s: set univ]
reflexivelr, s] and transitive|r]

pred equivalencelr: univ->univ, s: set univ]
r is reflexive, transitive, and symmetric over s.

pred partialOrder[r: univ -> univ, s: set univ]
ris a partial order over the set s.

pred totalOrder[r: univ -> univ, s: set univ]
r is a total order over the set s.

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 147

Modules -ternary

util/ternary provides utility functions for working with 3-arity Multirelations.
All functions return either an element in the relation or a new transformed
relation.

util/ternary

f fla->b ->c]
dom a

mid b

ran C

select12 a->b
selectl3 a->c
select23 b->c
flipl2 b->a->c
flipl3 c->b->a
flip23 a->c->Db

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 148

Modules -time

Automatically imports an ordered Time signature to your spec.
Warning

Time internally uses the ordering module. This means that the
signature is forced to be exact.

See also

Module ordering

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 149

Modules -time

Macros

letdynamic[x]
Arguments:

X (sig) — any signature.
Expands to:

X one -> Time

dynamic can be used as part of a signature definition:
open util/time

abstract sig Color {}
one sig Red, Green, Yellow extends Color {}

sig Light {
, State: dynamic[Color]

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 150

Modules -time

At every Time, every Light will have exactly one color.

let dynamicSet[x]
Arguments:

X (sig) — any signature.
Expands to:

X -> Time

Equivalent to dynamic, except that any number of elements can belong to any
given time:

open util/time

sig Keys {}

one sig Keyboard {
pressed: dynamicSet[Keys]

}

55 0y cdlulol olKisls 5 S gnnn 158 ol J5le 5 cwdige 55 ooy S S, o 151

