دانسگاه آزاداسلاهی واصد سربر نام درس: داده کاوی محن اسس سردار سمان نام اسآد: دكترمسود كاركر

MASOLIDE AREAR.

26 B.

Roadmap

- A brief history of SVM
- Large-margin linear classifier
 - Linear separable
 - Nonlinear separable
- Creating nonlinear classifiers: kernel trick
- A simple example
- Discussion on SVM
- Conclusion

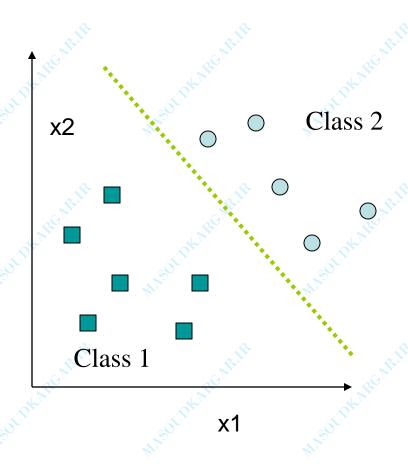
درس: داده کاوي

History of SVM (Support Vector Machines)

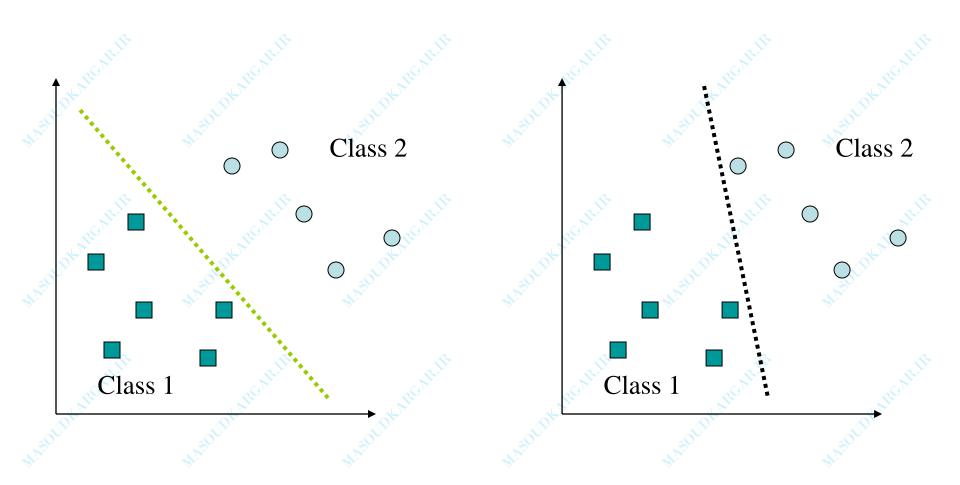
- SVM is related to statistical learning theory [3]
- SVM was first introduced in 1992 [1]
- SVM becomes popular because of its success in handwritten digit recognition
 - 1.1% test error rate for SVM. This is the same as the error rates of a carefully constructed neural network, LeNet 4.
 - See Section 5.11 in [2] or the discussion in [3] for details
- SVM is now regarded as an important example of "kernel methods", one of the key area in machine learning
 - Note: the meaning of "kernel" is different from the "kernel" function for Parzen windows

What is a good Decision Boundary?

- Consider a two-class, linearly separable classification problem
- Many decision boundaries!
 - The Perceptron algorithm can be used to find such a boundary
 - Different algorithms have been proposed (DHS ch. 5)
- Are all decision boundaries equally good?

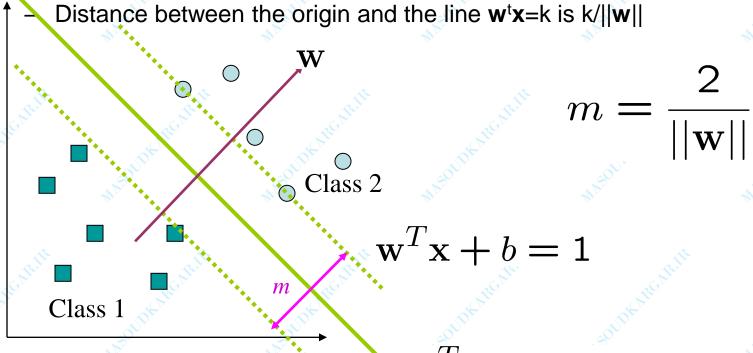


Examples of Bad Decision Boundaries



Large-margin Decision Boundary

- The decision boundary should be as far away from the data of both classes as possible
 - We should maximize the margin, *m*



$$\mathbf{w}^T \mathbf{x} + b = -1$$

 $\mathbf{w}^T \mathbf{x} + b = 0$

Finding the Decision Boundary

- Let $\{x_1, ..., x_n\}$ be our data set and let $y_i \in \{1,-1\}$ be the class label of x_i
- ullet The decision boundary should classify all points correctly \Rightarrow

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1, \quad \forall i$$

 The decision boundary can be found by solving the following constrained optimization problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$
 subject to $y_i(\mathbf{w}^T\mathbf{x}_i+b)\geq 1$ $\forall i$

- This is a constrained optimization problem. Solving it requires some new tools
 - Feel free to ignore the following several slides; what is important is the constrained optimization problem above

Recap of Constrained Optimization

- The case for inequality constraint $g_i(\mathbf{x}) \le 0$ is similar, except that the Lagrange multiplier α_i should be positive
- If \mathbf{x}_0 is a solution to the constrained optimization problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \leq 0$ for $i = 1, \dots, m$

• There must exist $\alpha_i \ge 0$ for i=1, ..., m such that \mathbf{x}_0 satisfy

$$\begin{cases} \frac{\partial}{\partial \mathbf{x}} \left(f(\mathbf{x}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{x}) \right) \Big|_{\mathbf{x} = jx_{0}} = \mathbf{0} \\ g_{i}(\mathbf{x}) \leq 0 \quad \text{for } i = 1, \dots, m \end{cases}$$

• The function $f(x) + \sum_{i} \alpha_{i}g_{i}(x)$ is also known as the Lagrangrian; we want to set its gradient to 0

Back to the Original Problem

$$\text{Minimize } \frac{1}{2}||\mathbf{w}||^2$$
 subject to $1-y_i(\mathbf{w}^T\mathbf{x}_i+b) \leq 0$ for $i=1,\ldots,n$

The Lagrangian is

$$\mathcal{L} = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{i=1}^n \alpha_i \left(1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right)$$

- Note that $||\mathbf{w}||^2 = \mathbf{w}^\mathsf{T}\mathbf{w}$
- Setting the gradient of w.r.t. " and b to zero, we have

$$\mathbf{w} + \sum_{i=1}^{n} \alpha_i (-y_i) \mathbf{x}_i = \mathbf{0} \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$\sum_{i=1}^{n} \alpha_i y_i = \mathbf{0}$$

The Dual Problem

$$\max_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0$,
$$\sum_{i=1}^n \alpha_i y_i = 0$$

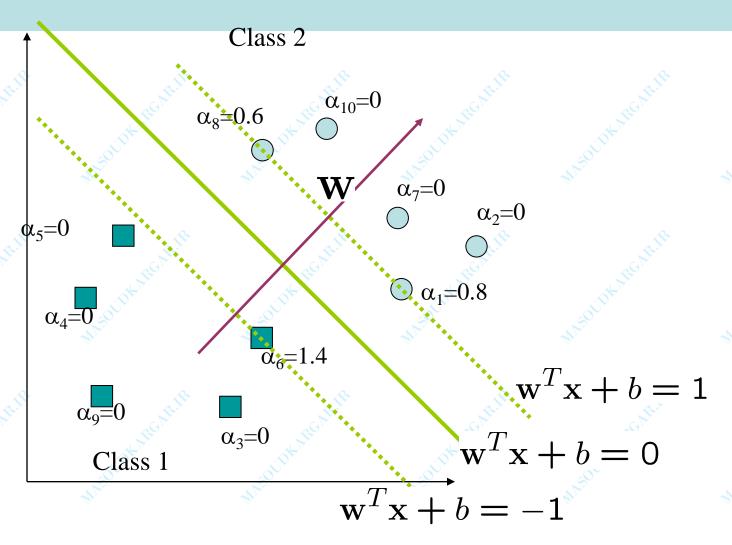
- This is a quadratic programming (QP) problem
 - A global maximum of α_i can always be found
- w can be recovered by

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

The Quadratic Programming Problem

- Many approaches have been proposed
 - Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html)
- Most are "interior-point" methods
 - Start with an initial solution that can violate the constraints
 - Improve this solution by optimizing the objective function and/or reducing the amount of constraint violation
- For SVM, sequential minimal optimization (SMO) seems to be the most popular
 - A QP with two variables is trivial to solve
 - Each iteration of SMO picks a pair of (α_i, α_i) and solve the QP with these two variables; repeat until convergence
- In practice, we can just regard the QP solver as a "black-box" without bothering how it works

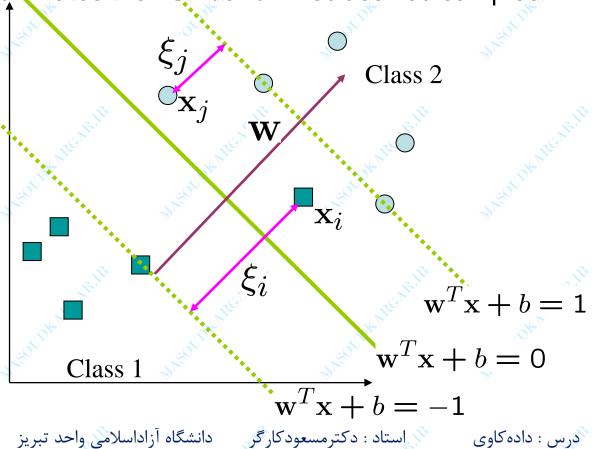
A Geometrical Interpretation



Non-linearly Separable Problems

We allow "error" ξ_i in classification; it is based on the output of the discriminant function wTx+b

 ξ_i approximates the number of misclassified samples



Soft Margin Hyperplane

If we minimize $\sum_{i} \xi_{i}$, ξ_{i} can be computed by

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge 1 - \xi_i & y_i = 1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1 + \xi_i & y_i = -1 \\ \xi_i \ge 0 & \forall i \end{cases}$$

- \Box ξ _i are "slack variables" in optimization
- Note that ξ_i =0 if there is no error for \mathbf{x}_i
- \Box ξ_i is an upper bound of the number of errors
- We want to minimize

$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

- C: tradeoff parameter between error and margin
- The optimization problem becomes

Minimize
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$
 subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$, $\xi_i \ge 0$

Feature Mapping and Kernel Trick

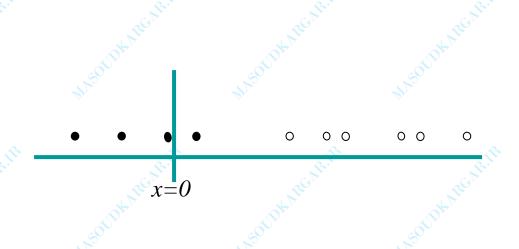
- Non-linear separable problem can be mapped to linearly mapped high-dimension space
- Feature mapping can be done implicitly by Kernel Trick

Extension to Non-linear Decision Boundary

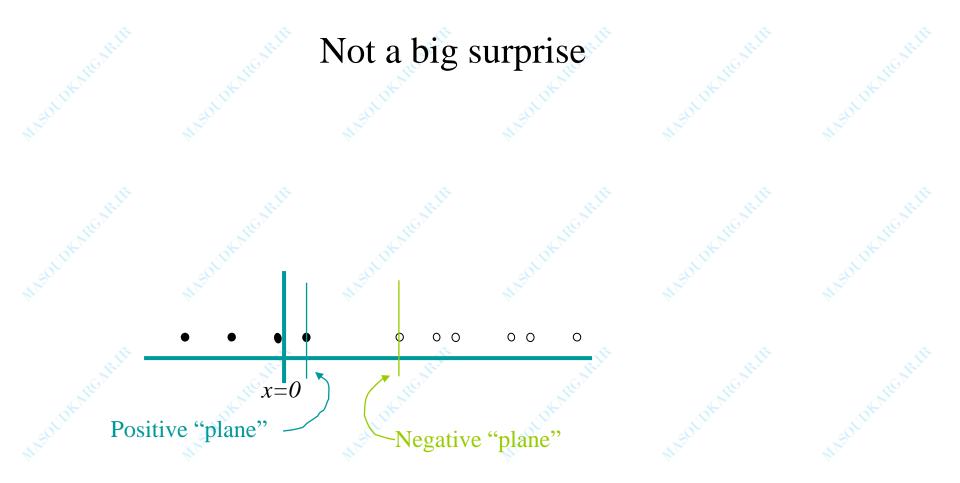
- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform **x**_i to a higher dimensional space to "make life easier"
 - Input space: the space the point \mathbf{x}_i are located
 - Feature space: the space of $\phi(\mathbf{x}_i)$ after transformation
- Why transform?
 - Linear operation in the feature space is equivalent to non-linear operation in input space
 - Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of x_1x_2 make the problem linearly separable

Suppose we're in 1-dimension

What would SVMs do with this data?

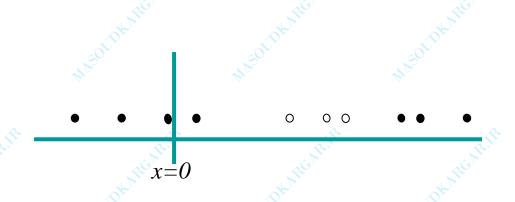


Suppose we're in 1-dimension

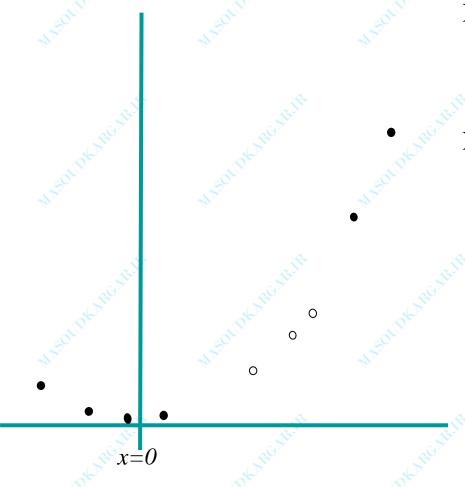


Harder 1-dimensional dataset

That's wiped the smirk off SVM's face. What can be done about this?



Harder 1-dimensional dataset

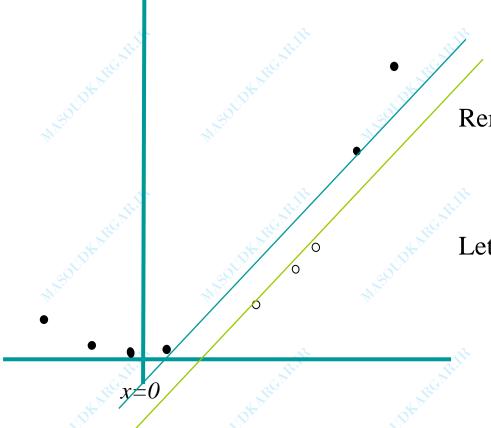


Remember how permitting non-linear basis functions made linear regression so much nicer?

Let's permit them here too

 $\mathbf{Z}_k = (x_k, x_k^2)$

Harder 1-dimensional dataset



Remember how permitting
non-linear basis functions
made linear regression so
much nicer?
Let's permit them here too

$$\mathbf{z}_k = (x_k, x_k^2)$$

Common SVM basis functions

 $z_k = (\text{polynomial terms of } x_k \text{ of degree 1 to } q)$ $z_k = (\text{ radial basis functions of } x_k)$ $\mathbf{z}_{k}[j] = \varphi_{j}(\mathbf{x}_{k}) = \exp\left(-\frac{|\mathbf{x}_{k} - \mathbf{c}_{j}|^{2}}{\sigma^{2}}\right)$

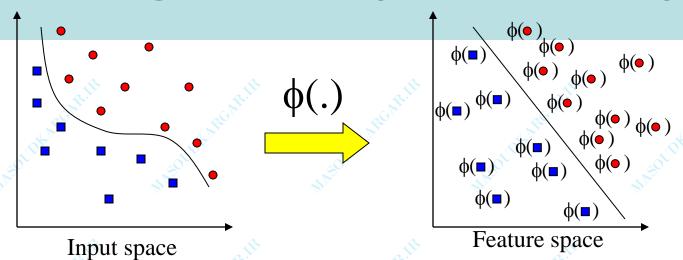
 $z_k = ($ sigmoid functions of $x_k)$

This is sensible.

Is that the end of the story?

No...there's one more trick!

Transforming the Data (c.f. DHS Ch. 5)



Note: feature space is of higher dimension than the input space in practice

- Computation in the feature space can be costly because it is high dimensional
 - The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

The Kernel Trick

Recall the SVM optimization problem

$$\max. \ W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $C \ge \alpha_i \ge 0, \sum_{i=1}^n \alpha_i y_i = 0$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

An Example for $\phi(.)$ and K(.,.)

Suppose φ(.) is given as follows

$$\phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

An inner product in the feature space is

$$\langle \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) \rangle = (1 + x_1y_1 + x_2y_2)^2$$

So, if we define the kernel function as follows, there is no need to carry out $\phi(.)$ explicitly

$$K(\mathbf{x}, \mathbf{y}) = (1 + x_1y_1 + x_2y_2)^2$$

This use of kernel function to avoid carrying out φ(.) explicitly is known as the kernel trick

Kernel Functions

- In practical use of SVM, the user specifies the kernel function; the transformation $\phi(.)$ is not explicitly stated
- Given a kernel function $K(\mathbf{x}_i, \mathbf{x}_i)$, the transformation $\phi(.)$ is given by its eigenfunctions (a concept in functional analysis)
 - Eigenfunctions can be difficult to construct explicitly
 - This is why people only specify the kernel function without worrying about the exact transformation
- Another view: kernel function, being an inner product, is really a similarity measure between the objects

Examples of Kernel Functions

Polynomial kernel with degree d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d$$

Radial basis function kernel with width σ

$$K(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x} - \mathbf{y}||^2/(2\sigma^2))$$

- Closely related to radial basis function neural networks
- The feature space is infinite-dimensional
- Sigmoid with parameter κ and θ

$$K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}^T \mathbf{y} + \theta)$$

It does not satisfy the Mercer condition on all κ and θ

Modification Due to Kernel Function

- Change all inner products to kernel functions
- For training,

Original

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

subject to $C \ge \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

With kernel function

max.
$$W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 subject to $C \geq \alpha_i \geq 0, \sum_{i=1}^n \alpha_i y_i = 0$

Modification Due to Kernel Function

For testing, the new data **z** is classified as class 1 if $f \ge 0$, and as class 2 if f < 0

Original

$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$

$$f = \mathbf{w}^T \mathbf{z} + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}^T \mathbf{z} + b$$

$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \phi(\mathbf{x}_{t_j})$$

With kernel function

$$f = \langle \mathbf{w}, \phi(\mathbf{z}) \rangle + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} K(\mathbf{x}_{t_j}, \mathbf{z}) + b$$

More on Kernel Functions

- Since the training of SVM only requires the value of $K(\mathbf{x}_i, \mathbf{x}_i)$, there is no restriction of the form of \mathbf{x}_i and \mathbf{x}_i
 - x_i can be a sequence or a tree, instead of a feature vector
- $K(\mathbf{x}_i, \mathbf{x}_i)$ is just a similarity measure comparing \mathbf{x}_i and \mathbf{x}_i
- For a test object **z**, the discriminat function essentially is a weighted sum of the similarity between z and a pre-selected set of objects (the support vectors)

$$f(\mathbf{z}) = \sum_{\mathbf{x}_i \in \mathcal{S}} \alpha_i y_i K(\mathbf{z}, \mathbf{x}_i) + b$$

 $\mathcal S$: the set of support vectors

Choosing the Kernel Function

- Probably the most tricky part of using SVM.
- The kernel function is important because it creates the kernel matrix, which summarizes all the data
- Many principles have been proposed (diffusion kernel, Fisher kernel, string kernel, ...)
- There is even research to estimate the kernel matrix from available information
- In practice, a low degree polynomial kernel or RBF kernel with a reasonable width is a good initial try
- Note that SVM with RBF kernel is closely related to RBF neural networks, with the centers of the radial basis functions automatically chosen for SVM

Software

- A list of SVM implementation can be found at http://www.kernelmachines.org/software.html
- Some implementations (such as LIBSVM) can handle multi-class classification
- SVMLight is among one of the earliest implementation of SVM
- Several Matlab toolboxes for SVM are also available

Summary: Steps for SVM Classification

- Prepare the pattern matrix
- Select the kernel function to use
- Select the parameter of the kernel function and the value of C
 - You can use the values suggested by the SVM software, or you can set apart a validation set to determine the values of the parameter
- Execute the training algorithm and obtain the α_i
- Unseen data can be classified using the α_i and the support vectors

Strengths and Weaknesses of SVM

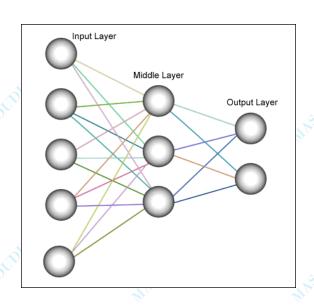
Strengths

- Training is relatively easy
 - No local optimal, unlike in neural networks
- It scales relatively well to high dimensional data
- Tradeoff between classifier complexity and error can be controlled explicitly
- Non-traditional data like strings and trees can be used as input to SVM, instead of feature vectors
- Inherent feature selection capability
- Weaknesses
 - Need to choose a "good" kernel function.

Other Types of Kernel Methods

- A lesson learnt in SVM: a linear algorithm in the feature space is equivalent to a non-linear algorithm in the input space
- Standard linear algorithms can be generalized to its nonlinear version by going to the feature space
 - Kernel principal component analysis, kernel independent component analysis, kernel canonical correlation analysis, kernel k-means, 1-class SVM are some examples

Comparing ANN and SVM



Learn a non-linear classifier with nonlinear decision boundary: →very hard optimization problem

Map input to high-dimension space and train a simple linear classifier → no local optima issue.

$$\phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$
$$K(\mathbf{x}, \mathbf{y}) = (1 + x_1y_1 + x_2y_2)^2$$

Conclusion

- SVM is a useful alternative to neural networks
- Two key concepts of SVM: maximize the margin and the kernel trick
- Many SVM implementations are available on the web for you to try on your data set!

Resources

- http://www.kernel-machines.org/
- http://www.support-vector.net/
- http://www.support-vector.net/icml-tutorial.pdf
- http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
- http://www.clopinet.com/isabelle/Projects/SVM/applist.html

Slides Credits

- Han. Textbook slides
- Tan Textbook slides
- Martin Law SVM slides, MSU
- Andrew W. Moore, CMU

Special appreciation

- Dr. Jianjun Hu
 http://mleg.cse.sc.edu/edu/csce822/
- University of South Carolina
- Department of Computer Science and Engineering