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Roadmap

A brief history of SVM

Large-margin linear classifier
— Linear separable
— Nonlinear separable

Creating nonlinear classifiers: kernel trick
A simple example

Discussion on SVM

Conclusion
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History of SVM (Support Vector Machines)

e SVM is related to statistical learning theory [3]
e SVM was first introduced in 1992 [1]

e SVM becomes popular because of its success in
handwritten digit recognition

e 1.19% test error rate for SVM. This is the same as the error rates of
a carefully constructed neural network, LeNet 4.

See Section 5.11 in [2] or the discussion in [3] for details
e SVM is now regarded as an important example of “kernel
methods”, one of the key area in machine learning

¢ Note: the meaning of “kernel” is different from the “kernel” function
for Parzen windows
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« Consider a two-class, linearly
separable classification
problem

« Many decision boundaries!

— The Perceptron algorithm can be

used to find such a boundary

What is a good Decision Boundary?

4

»

— Different algorithms have been

proposed (DHS ch. 5)

Are all decision boundaries

equally good?
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Examples of Bad Decision Boundaries

O Class 2

v
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Large-margin Decision Boundary

« The decision boundary should be as far away from the data of both
classes as possible

— We should maximize the margin, m

1 = Distance between the origin and the line wix=k is k/[|w]]
o M 2
m — ———
: ) Iwl]
O o Class 2
]
wlx +b=1
L] [] m
Class 1
" T _
WTX—l—b:—]- wx+b=0
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Finding the Decision Boundary

Let {Xy, ..., X} be our data set and lety; € {1,-1} be the class label of x
The decision boundary should classify all points correctly =

yi(w'x;+b)>1, Wi
The decision boundary can be found by solving the following
constrained optimization problem

o1 >
Minimize §||w||
subject to y;(w!x; +b) > 1 Vi

This is a constrained optimization problem. Solving it requires some

new tools

e Feel free to ignore the following several slides; what is important is the
constrained optimization problem above
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Recap of Constrained Optimization

* The case for inequality constraint g;(x)<0 is similar, except that
the Lagrange multiplier o; should be positive

¢ |f X, IS a solution to the constralned optimization problem
min f(x) subjectto ¢g;(x)<0 fori=1,...,m

e There must exist o0 for i=1, ..., m such that x, satisfy

[4(50) + Siaig(0)| =0
X=jxg

9i(x) <0 fori=1,...,m

e The function /™ T 29X i5 also known as the Lagrangrian;
we want to set Its gradient to O
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Back to the Original Problem

1
Minimize 5||w||2
subject to 1—y;(w'! x;4b) <0 fori=1,...,n
« The Lagrangian is

L= %W W—l-é: (1—yz(w XZ—|—b))

— Note that ||w|]? = wTw
- Setting the gradient of w.r.t. ' and b to zero, we have

mn mn
w4 D> a(-y)x, =0 = W= ) oyx;
i=1 i=1

mn
> ay;=0
i=1
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The Dual Problem

max. W(a) =) «a; — 5 > oYX X
i=1 i=1,,=1

n
subject to a; > 0, > a;y; =0
i=1

« Thisis a quadratic programming (QP) problem
— A global maximum of o; can always be found

* W can be recovered by

mn
W= ) o;yiX;
i=1

s aly odlwlsl;T olKisls S50 g 5SS ol SolSealo: yuyo
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The Quadratic Programming Problem

Many approaches have been proposed
® [ 0qgo, cplex, etc. (see hitp://www.numerical.rl.ac.uk/gp/gp.html)

Most are “interior-point” methods

e Start with an initial solution that can violate the constraints

e |Improve this solution by optimizing the objective function and/or reducing
the amount of constraint violation

For SVM, sequential minimal optimization (SMQO) seems to be the

most popular

e A QP with two variables is trivial to solve

e Each iteration of SMO picks a pair of (a;,04) and solve the QP with these
two variables; repeat until convergence

In practice, we can just regard the QP solver as a “black-box” without
bothering how it works
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http://www.numerical.rl.ac.uk/qp/qp.html

A Geometrical Interpretation

Class 2
05=0.6 OOLIO:O
O /
W7 a.=0
=0
w==0 O %2
X5 . O
@ a,=0.8
o ;
g§c6:1.4 -
wx+b=1
ocg.:O [ ] _I_
o,=0
Class 1 ’ ‘WTX +b=0
wlx + b= -1
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Non-linearly Separable Problems

* We allow “error” &; in classification; it is based on the output of the
discriminant function wx+b

* & approximates the number of misclassified samples

£ O
Oy o Class 2
Xj
w O
(] x; O
] a 3
] ¢ wix+b=1
T _
Class 1 Wix+b6=0

wlx —I—'b = —1
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Soft Margin Hyperplane

« If we minimize 2.&;, & can be computed by

(wlix;+b>1-¢ Yy =1

Swlix+b<—-14¢ y=-1

\67; >0 \V/’I,

1 &; are “slack variables” in optimization
— Note that £=0 if there is no error for x;
1 & is an upper bound of the number of errors

« We want to minimize

w2+ O &

— C : tradeoff parameter between error and margin
* The optimization problem becomes

Minimize 3||w||2 + C X7, &
subject to y;(wlx; +b) >1—&;, & >0
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Feature Mapping and Kernel Trick

* Non-linear separable problem can be mapped to linearly
mapped high-dimension space

« Feature mapping can be done implicitly by Kernel Trick
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Extension to Non-linear Decision Boundary

So far, we have only considered large-margin classifier with a linear decision
boundary

How to generalize it to become nonlinear?

Key idea: transform x; to a higher dimensional space to “make life easier”
¢ Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

Why transform?

e Linear operation in the feature space is equivalent to non-linear operation in input
space

e (Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable
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Suppose we’re in 1-dimension

What would SVVMs do with this data?
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Suppose we’re in 1-dimension

Not a big surprise

&
Positive “plane”

s aly odlwlsl;T olKisls S 80 gre 5SS ol oS oals : wyo

18



Harder 1-dimensional dataset

That’s wiped the smirk off SVM’s face.
What can be done about this?
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Harder 1-dimensional dataset

Remember how permitting
non-linear basis functions
made linear regression so
much nicer?

Let’s permit them here too
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Harder 1-dimensional dataset

Remember how permitting
non-linear basis functions
made linear regression so
much nicer?

Let’s permit them here too

;ﬁﬂ Zy :(Xk1xlf)
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Common SVM basis functions

Z, = ( polynomial terms of x, of degree 1toq)
Z, = ( radial basis functions of x,
| Xk —C; N

2, [1]1=j(X,) =exp| — >
o

Z, = ( sigmoid functions of x, )

No...there’s one more trick!
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Transforming the Data (c.f. DHS Ch. 5)

v

Input space

o)

¢(.4i<-> ¢£4(2(-)43(.) "
o(m) ) o)
o(m) )
M

Feature space

Note: feature space is of higher dimension
than the input space in practice

« Computation in the feature space can be costly because it is high

dimensional

— The feature space is typically infinite-dimensional!

» The kernel trick comes to rescue
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The Kernel Trick

Recall the SVM optimization problem

n 1 n
max. W(C\’,) = Z Q; — 5 Z QY
=1 1=1,7=1

n
subject to C > a; >0, > a;y; =0
i=1

The data points only appear as inner product

As long as we can calculate the inner product in the feature space,
we do not need the mapping explicitly

Many common geometric operations (angles, distances) can be
expressed by inner products

Define the kernel function K by

K (x;,%5) = ¢(x;) (%)
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An Example for ¢(.) and K(.,.)

Suppose ¢(.) is given as follows

s(| 35 ) = (1,V231, V210,22, 23, V22172)
An inner product in the feature space is

(@[55 ), ([ ])) = (L + 2191 + 22y2)°

So, iIf we define the kernel function as follows, there is no need

to carry out ¢(.) explicitly

K(x,y) = (1 4+ z1y1 + z2y2)?

This use of kernel function to avoid carrying out ¢(.) explicitly is

known as the kernel trick
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Kernel Functions

In practical use of SVM, the user specifies the kernel function; the
transformation ¢(.) is not explicitly stated
Given a kernel function K(x;, X;), the transformation ¢(.) is given by
Its eigenfunctions (a concept in functional analysis)

— Eigenfunctions can be difficult to construct explicitly

— This is why people only specify the kernel function without worrying

about the exact transformation

Another view: kernel function, being an inner product, is really a
similarity measure between the objects
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Examples of Kernel Functions

e Polynomial kernel with degree d
K(x,y) = (x"y + 1)
¢ Radial basis function kernel with width ¢
K (x,y) = exp(—|[x — y[[*/(20°))

e Closely related to radial basis function neural networks
e The feature space is infinite-dimensional

e Sigmoid with parameter « and 0
K(x,y) = tanh(kxly 4+ 0)

¢ |t does not satisfy the Mercer condition on all k and 6
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Modification Due to Kernel Function

« Change all inner products to kernel functions
 For training,

Original max. W(a) = Z: &= 5 ._Z_ ;O YY X X
1=1 1=1,7=1
n
subject to C > a; >0, > oyy; =0
1=1

n 1 n
max. W(a) = Z Ol —— Z a?jajyiyjK(Xiaxj)

With kernel function =1 2,=1=1
n
subject to C > a; >0, > oyy; =0
1=1
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Modification Due to Kernel Function

* For testing, the new data z is classified as class 1 if f >0, and as
class 2 if f <0

S
W — Zl Oétjythtj
j:

S
f — WTZ 4+ b= Z oztjythz;Z 4+ b
J=1

Original

W = Z atjytj¢(xtj)

With kernel function J=1

f — <W7 ¢(Z)> + b= Z atjyth<th7 Z) + b
j=1
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More on Kernel Functions

Since the training of SVM only requires the value of K(x;, X;), there Is
no restriction of the form of x; and x;

— X; can be a sequence or a tree, instead of a feature vector
K(X;, X;) Is Just a similarity measure comparing x; and x;
For a test object z, the discriminat function essentially is a weighted

sum of the similarity between z and a pre-selected set of objects
(the support vectors)

f(z) =) ouK(z,%x;)+b

x;€S
S : the set of support vectors
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Choosing the Kernel Function

Probably the most tricky part of using SVM.

The kernel function is important because it creates the kernel matrix, which
summarizes all the data

Many principles have been proposed (diffusion kernel, Fisher kernel, string
kernel, ...)

There is even research to estimate the kernel matrix from available information

In practice, a low degree polynomial kernel or RBF kernel with a
reasonable width is a good initial try

Note that SVM with RBF kernel is closely related to RBF neural networks, with
the centers of the radial basis functions automatically chosen for SVM
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Software

A list of SVM implementation can be found at http://www.kernel-
machines.org/software.html

Some implementations (such as LIBSVM) can handle multi-class
classification

SVMLight is among one of the earliest implementation of SVM
Several Matlab toolboxes for SVM are also available
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Summary: Steps for SVM Classification

Prepare the pattern matrix
Select the kernel function to use

Select the parameter of the kernel function and the value of C

— You can use the values suggested by the SVM software, or you can set
apart a validation set to determine the values of the parameter

Execute the training algorithm and obtain the q;
Unseen data can be classified using the o; and the support vectors
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Strengths and Weaknesses of SVM

« Strengths

Training is relatively easy
* No local optimal, unlike in neural networks

It scales relatively well to high dimensional data

Tradeoff between classifier complexity and error can be
controlled explicitly

Non-traditional data like strings and trees can be used as input
to SVM, instead of feature vectors

Inherent feature selection capability

« Weaknesses

Need to choose a “good” kernel function.
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Other Types of Kernel Methods

 Alesson learnt in SVM: a linear algorithm in the feature

space is equivalent to a non-linear algorithm in the input
space

« Standard linear algorithms can be generalized to its non-

linear version by going to the feature space

— Kernel principal component analysis, kernel independent
component analysis, kernel canonical correlation analysis, kernel
k-means, 1-class SVM are some examples
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Comparing ANN and SVM

Learn a non-linear classifier with non-

linear decision boundary: ->very hard
optimization problem

Map input to high-dimension space and

train a simple linear classifier - no local
optima issue.

Qﬁ({%}) = (1,v2z1,V 270,22, 25,V 21172)
K(x,y) = (1 + 21y1 + 2oyn)?
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Conclusion

SVM is a useful alternative to neural networks

Two key concepts of SVM: maximize the margin and the
kernel trick

Many SVM implementations are available on the web for
you to try on your data set!
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Resources

http://www.kernel-machines.org/
http://www.support-vector.net/
http://www.support-vector.net/icml-tutorial.pdf
http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
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Slides Credits

Han. Textbook slides

Tan Textbook slides

Martin Law SVM slides, MSU
Andrew W. Moore, CMU
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