2wl U/b'ﬁ;!' ly

AP r/ SAIAS IS 3P rt o

‘0
¢

AlCoysbs st e s S,
“y

ﬁ/’/ ;)/:)f/l rf

Overview

e Basics of dynamic models
— Modeling a system’s states and state transitions
— Modeling operations causing transitions

e Simple example of operations

s aly oDl oKl S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

Static Models

e So far we’ve used Alloy to define the allowable values of state

components
— values of sets
— values of relations

e A model instance is a set of state component values that
— Satisfies the constraints defined by multiplicities,fact, “realism”
conditions, ...

s aly oDl oKl S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

Static Models

3 axlg GA)LA\QUT olKisls

Person = {Matt, Sue}
Man = {Matt}
Person = {Matt, Sue} woman = {Sue}
Married = {Matt, Sue}
Man = {Matt}
spouse = {(Matt,Sue), (Sue,Matt)}
woman = {Sue}]
i od children = {}
Married = A
i} siblings = {}
spouse = {}
. Person = {Matt, Sue, Sean}
children = {}
Man = {Matt, Sean}
siblings = {} woman = {Sue}
Married = {Matt, Sue}
spouse = {(Matt,sSue), (Sue,Mmatt)}
children = {(Matt,Sean), (Sue,Sean)}
siblings = {}

S50 gre i8S 1 oLl

le 5 (cwdipe ;o (cowoy Sl g,)0

Dynamic Models

e Static models allow us to describe the legal states of a
dynamic system

e \We also want to be able to describe the legal transitions

between states

E.g.
— To get married one must be alive and not currently married

— One must be alive to be able to die
— A person becomes someone’s child after birth

s aly oDl oKl S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

Example

Family Model

abstract sig Person {
children: set Person,
siblings: set Person

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married

}

o aly bl oKl 3 S0 gmue 1S 1 ol J38le 5 cwdige 0 comy sloyBg,y gy

State Tra

« Two people get married
— At time t, spouse = {}
— At time t’, spouse = {(Matt
=We add the notion of time

nsitions

, Sue), (Sue,Matt)}
In the relation spouse

Person = {Matt,Sue} Person
Man = {Matt} Man =
woman = {Sue} woman

= {Matt, Sue}
{Matt}
= {Sue}

Married = {}
spouse = {}
children = {}
siblings = {}

Time t

v

Married = {Matt, Sue}

children = {}
siblings = {}

spouse = {(Matt, Sue), (Sue, Matt)}

Time t’

3 axlg GA)L.»M)'T olKisls

S50 gre i8S 1 oLl

le 5 (cwdipe ;o (cowoy Sl g,)0

Modelling State Transitions

* Alloy has no predefined notion of state transition

* However, there are several ways to model dynamic
aspects of a system in Alloy

A general and relatively simple way is to:

1. introduce a Time signature expressing time

2. add a time component to each relation that changes
over time

s aly oDl oKl S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

Family Model Signatures

abstract sig Person {
children: set Person,
siblings: set Person set
sig Man, Woman extends Person {}
sig Married in Person {

spouse: one Married one

o aly bl oKl 3 S0 gmue 1S 1 ol J38le 5 cwdige 0 comy sloyBg,y gy

Family Model Signatures with Time

sig Time {}

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

¥

T 1w < S . 10
e dlg cdulolyl o Kisls 355 0 gm0 550 1 ol J3Ble y i ;0 coms, Gl by, wyo

Transitions

« Two people get married
— At time t, Married = {}
— At time t', Married = {Matt, Sue}
— Actually, we can’t have a time-dependent signature such as
Married because signatures are not time dependent

Person = {Matt,Sue} Person = {Matt, Sue}
Man = {Matt} Man = {Matt}
woman = {Sue} woman = {Sue}

k

Married = {} Married = {Matt, Sue}

spouse = {} spouse = {(Matt, Sue), (Sue, Matt)}
children = {} children = {}
siblings = {3 Timet siblings = {} Time t’

o _ | , . 11
e dlg cdulolyl o Kisls S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

* A person is born

Transitions

— At time t, Person = {}

— Attime t’, Person = {Sue}

— We cannot add the notion being born to the signature
Person because signhatures are not time dependent

Person = {}
Man = {}
woman = {}

spouse = {}
children = {}
siblings = {}

Time t

Person = {Sue}
Man = {}
»| woman = {Sue}

P a>lg GA)L»\Q‘)'T olKisls

S50 gre i8S 1 oLl

spouse = {}
children = {}

siblings = {} [imet’

le 5 (cwdipe ;o (cowoy Sl g,)0

12

Signatures are Static

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

}

sig Man, Woman extends Person {}

_;TE“Marﬁied in Person {

spouse: Mar

-> Time

o aly bl oKl 3 S0 gmue 1S 1 ol J38le 5 cwdige 0 comy sloyBg,y gy

13

Signatures are Static

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time
alive: set Time

sig Man, Woman extends Person {}

o aly bl oKl 3 S0 gmue 1S 1 ol J38le 5 cwdige 0 comy sloyBg,y gy

14

Revising Constraints

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time

¥

sig Man, Woman extends Person {}

fun parents[] : Person->Person {~children}

T 1€ as c o , 15
e dlg cdulolyl o Kisls 355 0 gm0 550 1 ol J3Ble y i ;0 coms, Gl by, wyo

Revising Constraints

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time

parents: Person set -> Time
}

sig Man, Woman extends Person {}

—ForrereR SRS R e RS o e
fact parentsDef
all t: Time | parents.t = ~(children.t)

}

o aly bl oKl 3 S0 gmue 1S 1 ol J38le 5 cwdige 0 comy sloyBg,y gy

16

Revising Constraints

fact parentsDef {
all t: Time | parents.t = ~(children.t)

pred BloodRelatives [p, q: Person, t: Time]

{
some p.*(parents.t) & qg.*(parents.t)

}

s aly oDl oKl S8 0 gre 2SS 1 sl J3Ble y i ;0 coms, Gl by, wyo

17

Revising Static Constraints

all t: Time | no p: Person
p in p.”(parents.t)

all t: Time | all p: Person |
lone (p.parents.t & Man)
and
lone (p.parents.t & Woman)

s aly oDl oKl S8 0 gre 2SS 1 sl J3Ble y i ;0 coms, Gl by, wyo

18

Revising Static Constraints

all t: Time | all p: Person |
p.siblings.t =
{ gq: Person - p | some g.parents.t and
p.parents.t = g.parents.t }

all t: Time | all p: Person |
let s = p.spouse.t |

(p in Man implies s in Woman) and
(p in Woman implies s in Man)

T e _ : , 19
e dlg cdulolyl o Kisls 355 0 gm0 550 1 ol J3Ble y i ;0 coms, Gl by, wyo

Revising Static Constraints

all t: Time | no p: Person |
some p.spouse.t and
p.spouse.t in p.siblings.t

all t: Time | no p: Person |
let s = p.spouse.t |
some s and
BloodRelatives[p, s, t]

s aly oDl oKl S8 0 gre 2SS 1 sl J3Ble y i ;0 coms, Gl by, wyo

20

Revising Static Constraints

all t: Time | all p, g: Person |
(some (p.children.t & g.children.t) and

p '=q)
implies
not BloodRelatives|[p, q, t]

all t: Time |
spouse.t = ~(spouse.t)

s aly oDl oKl S8 0 gre 2SS 1 sl J3Ble y i ;0 coms, Gl by, wyo

21

Exercises

e Load family-6.als

e Execute it

e Analyze the model

e Look at the generated instance

e Does it look correct?

e What, if anything, would you change about it?

s aly oDl oKl S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

22

Transitions

A person is born from
parents
— Add to alive relation
— Modify
children/parents relations

3 axlg GA)LA\QUT olKisls

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,Sue), (Sue,Mmatt)}
children = {}

siblings = {}

alive = {Matt, Sue}

v

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(Matt,Sean), (Sue,Sean)}
siblings = {}

alive = {Matt, Sue, Sean}

S50 gre i8S 1 oLl

o . 23
P8le s (owaige ;0 (oo slo byt (w0

State Sequences

Person = {Matt, Sue, Sean}
Man = {Matt, Sean}

woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {Sue}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,sue), (Sue,Mmatt)}
children = {}

siblings = {}

alive = {Sue, Matt}

|

l

Person = {Matt, Sue, Sean}
Man = {Matt, Sean}

woman = {Sue}

spouse = {}

children = {}

siblings = {}

alive = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(Matt,Sean), (Sue,Sean)}
siblings = {}

alive = {Sue, Matt, Sean}

3 axlg GA)L.»M)'T olKisls

;)UQW)SSO:

st NBle s (ot 53 ooy SS9, 50

24

Expressing Transitions in Alloy

e A transition can be thought of as caused by the application of an
operator to the current state

e An operator can be modeled as a predicate over two states:
1. the state right before the transition and
2. the state right after it

e We define it as predicate with (at least) two formal parameters: t, t': Time
e Constraints over time t (resp., t’) model the state right before

(resp., after) the transition

T e _ : , 25
e dlg cdulolyl o Kisls S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

Expressing Transitions in Alloy

e Pre-condition constraints

— Describe the states to which the transition applies
e Post-condition constraints

— Describes the effects of the transition in generating the next state
e Frame-condition constraints

— Describes what does not change between pre-state and post-
state of a transition

Distinguishing the pre-, post- and frame-conditions in
comments provides useful documentation

T e _ : , 26
e dlg cdulolyl o Kisls S8 0 gre 2SS 1 sl S38le 5 cwdige 30 comy slB gy o

Example: Marriage

pred getMarried [m: Man, w:

m+w in alive.t

-- neither one is married
no (m+w).spouse.t

-- they are not be blood
not BloodRelatives[m, w,

m.spouse.t’' = w

w.spouse.t’ =m

3 axlg GA)L.»b!ﬂ olZislo 355 0 gm0 550 1 ol

Woman, t,t': Time] {

relatives
t]

PBley (owdige ;0 (comy o sbg, (0

27

Frame Condition

How is each relation touched by marriage?

e 5 relations :
— children, parents, siblings
— spouse
— alive
e parents and siblings relations are defined in terms of the children relation

e Thus, the frame condition has only to consider children, spouse and alive
relations

T e _ : , 28
e dlg cdulolyl o Kisls S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

Frame Condition Predicates

pred noChildrenChangeExcept [ps: set Person
t,t': Time] {
all p: Person - ps |
p.children.t' = p.children.t
¥

pred noSpouseChangeExcept [ps: set Person
t,t': Time] {
all p: Person - ps |
p.spouse.t’ = p.spouse.t
¥

pred noAliveChange [t,t': Time] {
alive.t’ = alive.t

}

T 1w < S . 29
e dlg cdulolyl o Kisls 355 0 gm0 550 1 ol J3Ble y i ;0 coms, Gl by, wyo

Example: Marriage

pred getMarried|[m: Man, w: Woman, t,t': Time]

{

m+w in alive.t
no (m+w).spouse.t
not BloodRelatives[m, w, t]

m.spouse.t’' = w
noSpouseChangeExcept[m+w, t, t’]

noChildrenChangeExcept[none, t, t’]
noAliveChange[t, t’]

o aly bl oKl 3 S0 gmue 1S 1 ol J38le 5 cwdige 0 comy sloyBg,y gy

30

Instance of Marriage

open ordering [Time] as T

pred marriagelnstance {
some t: Time |
some m: Man | some w: Woman |
getMarried[m, w, t, T/next[t]]
}

run { marriagelInstance }

o aly bl oKl 3 S0 gmue 1S 1 ol J38le 5 cwdige 0 comy sloyBg,y gy

31

Example: Birth from Parents

pred isBornFromParents [p: Person, m,w: Person,
t,;t": Time] {

m+w in alive.t
p !in alive.t

alive.t' = alive.t + p
m.children.t' = m.children.t + p
w.children.t' = w.children.t + p

noChildrenChangeExcept[m+w, t, t']
noSpouseChangeExcept[none, t, t']

T e - : , 32
e dlg cdulolyl o Kisls 355 0 gm0 550 1 ol J3Ble y i ;0 coms, Gl by, wyo

Instance of Birth

pred birthInstance {
some t: Time |
some pl, p2, p3: Person |
isBornFromParents[pl, p2, p3, t, T/next[t]]

run { birthInstance }

s aly oDl oKl S8 0 gre 2SS 1 sl J3Ble y i ;0 coms, Gl by, wyo

33

Example: Death

pred dies [p: Person, t,t': Time] {

p in alive.t

no p.spouse.t’

alive.t' = alive.t - p
all s: p.spouse.t |
s.spouse.t' = s.spouse.t - p

noChildrenChangeExcept[none, t, t']
noSpouseChangeExcept[p + p.spouse.t, t, t']

s aly oDl oKl S8 0 gre 2SS 1 sl J3Ble y i ;0 coms, Gl by, wyo

34

Instance of Death

pred deathInstance {
some t: Time|
some p: Person |
dies[p, t, T/next[t]]

run { deathInstance }

o aly bl oKl 3 S0 gmue 1S 1 ol J38le 5 cwdige 0 comy sloyBg,y gy

35

Specifying Transition Systems

e A transition system can be defined as a set of executions:

sequences of time steps generated by the operators
e |n our example, for every execution:

— The first time step satisfies some initialization condition
— Each pair of consecutive steps are related by

* a birth operation, or
* a death operation, or
* a marriage operation

T e _ : . 36
e dlg cdulolyl o Kisls S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

Initial State Specification

INit specifies constraints on the initial state

pred init [t: Time] {
no children.t
no spouse.tT
#alive.t > 2
#Person > #alive.t

T 1es c s , 37
e dlg cdulolyl o Kisls S8 0 gre 2SS 1 sl J3Ble y i ;0 coms, Gl by, wyo

Transition Relation Specification

trans specifies that each transition is a consequence of the
application of one of the operators to some individuals

pred trans [t,t': Time] {

(some m: Man, w: Woman |
getMarried [m, w, t, t'])

or

(some p: Person, m: Man, w: Woman |
isBornFromParents [p, m, w, t, t'])

or

(some p :Person | dies [p, t, t'])

s aly oDl oKl S8 0 gre 2SS 1 sl J3Ble y i ;0 coms, Gl by, wyo

System Specification

System specifies that each execution of the system startsin a
state satisfying the initial state condition and moves from one
state to the next through the application of one operator at a
time, until it reaches the final state

pred System {
init[T/first]
all t: Time - T/last | trans[t, T/next[t]]

}
run { System }

T qe - c oo . 39
e dlg cdulolyl o Kisls S8 0 gre 2SS 1 sl J3Ble y i ;0 coms, Gl by, wyo

System Invariants

e Many of the facts that we stated in our static model now become
expected system invariants

e These are properties that
—should hold in initial states
— should be preserved by system transitions

e |In Alloy we can check that a property is invariant (in a given scope) by
— encoding it as a formula P and checking
— checking the assertion

System => all t: Time | P

T e _ : , 40
e dlg cdulolyl o Kisls S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

Expected Invariants: Examples

assert al { System => all t: Time |

no p: Person | p in p.”(parents.t)

by
check al for 8

assert a2 { System => all t: Time |
all p: Person |
lone (p.parents.t & Man) and
lone (p.parents.t & Woman)

by
check a2 for 8

T e - : , 41
e dlg cdulolyl o Kisls 355 0 gm0 550 1 ol J3Ble y i ;0 coms, Gl by, wyo

Exercises

e Load family-7.als

e Execute it

e Look at the generated instance

e Does it look correct?

e What if anything would you change about it?

e Check each of the given assertions

e Are they all valid?

e |f not, how would you change the model to fix that?

s aly oDl oKl S50 gre i8S 1 oLl S38le 5 cwdige 30 comy slB gy o

42

special appreciation

2 Haniel Barbosa from uiowa university

2 TA: Parisa Akhbari

s aly oDl oKzl S8 0 gre 250 1 sl J3Ble y g 30 coms, Gl by, wyo

43

