27 U’b'ﬁ;!' ly

.0 R , b *
/'/'(/U/M/’U(JJfJ)J :u/’rt

/'/‘OI r/b’}‘r’/)u’ it fJ')/{J s :‘ff;.

%f’ /“)/:)LI (L.

D

>y o e
,'/ \'\

e -
=il
Jf‘!l.f‘né:

N\

Learn about formal methods (FM) in software engineering

Understand how formal methods (FM) help produce high-quality software
Learn about formal modeling and specification languages

Write and understand formal requirement specifications

Learn about main approaches in formal software verification

Know which formal methods to use and when

Use automatic and interactive tools to verify models and code

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

S Slegdge

Software Specification

0 High-level design

o System-level design (Model-based Development)
0 Code-level design

Main Software Validation Techniques

0 Model Finding/Checking:
often automatic, abstract

0 Deductive Verification:
typically semi-automatic, precise (source code level)

0 Abstract Interpretation:
automatic, correct, incomplete, terminating

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

B)Q GQJ.:LQ)L»
0 Course organized by level of specification
0 Emphasis on tool-based specification and validation methods
0 A number of ungraded exercises
o Hands-on homework where you specify, design, and verify
0 For each main topic

= Ateam introductory homework assignment
= Ateam mini-project

Q More details on the syllabus and the website

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

Language: Alloy
0 Lightweight modeling language for software design
0 Amenable to a fully automatic analysis

0 Aimed at expressing complex structural constraints and behavior in
a software system

0 Intuitive structural modeling tool based on first-order logic
0 Automatic analyzer based on SAT solving technology

Learning Outcomes

0 Design and model software systems in the Alloy language
0 Check models and their properties with the Alloy Analyzer
0 Understand what can and cannot be expressed in Alloy

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

Language: Lustre

0 Executable specification language for synchronous reactive
systems

0 Designed for efficient compilation and formal verification
0 Used in safety-critical applications industry

0 Automatic analysis with tools based on model-checking
techniques

Learning Outcomes:

o Write system and property specifications in Lustre

0 Perform simulations and verifications of Lustre models

0 Understand what can and cannot be expressed in Lustre

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

S mhw Slasie ¥ Cuand

Language: Dafny
0 Programming language with specification constructs

0 Specifications embedded in source code as formal
contracts

o Tool support with sophisticated verification engines
0 Automatic analysis based on theorem proving techniques

Learning Outcomes:
o Write formal specifications and contracts in Dafny

o Verify functional properties of Dafny programs with
automated tools

2 Understand what can and cannot be expressed in Dafny

e sy edlwlsl;T slKisls S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

Aolxi aas Ol ((Slal) o,les Cas

Language: Lean

0 General-purpose logical language with executable
sublanguage

0 Supports both mathematical reasoning and reasoning
about complex systems

0 Powerful proof-assistant

0 Semi-automatic, based on interactive theorem proving
techniques

Learning Outcomes:

o Write formal specifications and programs in Lean

0 Proof properties in Lean interactively

2 Understand what can and cannot be expressed in Lean

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

O 0O 0O 0 0O 0 0 O

L 24 >0 S
*0
*0 *

Software has become critical to modern life

Communication (internet, voice, video, . . .)
Transportation (air traffic control, avionics, cars, . . .)
Health Care (patient monitoring, device control, . . .)
Finance (automatic trading, banking, . . .)

Defense (intelligence, weapons control, . . .)
Manufacturing (precision milling, assembly, . . .)
Process Control (oil, gas, water, . . .)

e sy edlwlsl;T slKisls S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

Software is now embedded everywhere

P g GA)L»L:UT oKty

S5 0 gre 250 1 oLl

Bley (owaige ;0 (o) sl by, (0

10

Software is now embedded everywhere Some of it is critical

T qe - c . o 11
e dlg cdwlolyl o Kisls S5 0 gre 250 1 oLl J3Ble 5w 0 cowsy SlB gy Ly

Software is now embedded everywhere Some of it is critical

Failing software costs money and life!

s aly oDl oKzl S5 0 gre 250 1 oLl S38le 5 cwdige 40 commy S gyt)

12

&Sl B¥le p et plo jiolisl

%j DoD software is growing in size and
- complexity

LLS. AR FOIRCE

Total Onboard Computer Capacity (OFP)

5000

4500 JoF
t:‘l‘ol‘

4000 A

3500 A

3000 /
2500

b
2000 | Zé‘é‘

k Source Lines of Code (kSLOC)

1500 Fiessr
FA6C o o
1000 rigy— B =
F-15CDe2
500 g P
— F111 FB-11) M FA5CDs0
0 < J ¥
1950 1960 1970 1980 1990 2000 2010

Source: “Avionics Acquisition, Production, and Sustainment: Lessons
Learned — The Hard Way”, NDIA Systems Engineering Conference, Mr.
D. Gary Van Oss, October 2002. Robert Gold, OSD

s aly oDl oKzl S5 0 gre 250 1 oLl J3Ble 5w 0 cowsy SlB gy Ly

&SHl8le p sl i plo yiolisl

Lines
of
Code

T

Lockheed Boeing 787
F-22 Raptor Dreamliner™

150M

100M

Airbus 2015 Ford
A3S0 F-150

- Avionics and anlne support systems oniy.

3 axlg 60L»L>|ﬂ olZisls 355 0 gm0 550 1 ol

Bley (owaige ;0 (o) sl by, (0

14

&Sl B¥le p et plo jiolisl

Automotive Software

a Atypical 2017 car model contains ~100M lines of code:
how do you verify that?

a Current cars admit hundreds of onboard functions:
how do you cover their combination?

E.g., does braking when changing the radio station and
starting the windscreen wiper, affect air conditioning?

T e _ : , 15
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

g

a

Q

IPley 2l 5l 26U as se

Expensive recalls products with embedded software

Lawsuits for loss of life or property damage
= Car crashes (e.g., Toyota Camry 2005)

Thousands of dollars for each minute of down-time
= (e.g., Denver Airport Luggage Handling System)

Huge losses of monetary and intellectual investment
= Rocket boost failure (e.g., Ariane 5)

Business failures associated with buggy software
= (e.g., Ashton-Tate dBase)

P g GA)L»\Q‘)'W olZisls

S50 gre i8S 1 ol

dle 5 (dipe ;o (comy Sl hgy ()0

16

Pl y 2l 5l (b anse
0 Potential problems are obvious:
= Software used to control nuclear power plants
= Air-traffic control systems
= Spacecraft launch vehicle control
= Embedded software in cars

a A well-known and tragic example:
Therac-25 radiation machine failures

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

17

Sl B8le 5 slpinan Sig

Software seems particularly prone to faults

Tiny faults can have catastrophic consequences
0 Ariane 5

a Mars Climate Orbiter, Mars Sojourner

0 Pentium-Bug
0

Rare bugs can occur
o avg. lifetime of a passenger plane: 30 years
o avg. lifetime of a car: < 10 years, but already > 1:2B cars in 2014

Logic and implementation errors represent security exploits
(too many to mention)

T e _ : , 18
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

ada>Se

Building software is what most of you will do after graduation
2 You'll be developing systems in the context above
0 Given the increasing importance of software,

= you may be liable for errors
= your job may depend on your ability to produce reliable systems

What are the challenges in building
reliable and secure software?

T e _ : , 19
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

PR ST SSCN CUUN = JIUE L - I VR U VR

Some well-known strategies from civil engineering:

0 Precise calculations/estimations of forces, stress, etc.

0 Hardware redundancy (“make it a bit stronger than necessary”)
0 Robust design (single fault not catastrophic)

0 Clear separation of subsystems (any airplane flies with dozens of
known and minor defects)

0 Design follows patterns that are proven to work

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

o000

S8l e 5 et slp plete (S

Software systems compute non-continuous functions
Single bit-flip may change behavior completely

Redundancy as replication doesn’t help against bugs
Redundant SW development only viable in extreme cases

No physical or modal separation of subsystems
Local failures often affect whole system

Software designs have very high logic complexity
Most SW engineers untrained in correctness

Cost efficiency more important than reliability

Design practice for reliable software is not yet mature

T e c : , 21
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

€S ol liabsl 58l &5 oo 5l aigS

A Central Strategy: Testing
(others: SW processes, reviews, libraries, . . .)

Testing against inherent SW errors (“bugs”)
0 Design test configurations that hopefully are representative and
0 ensure that the system behaves as intended on them

Testing against external faults
0 Inject faults (memory, communication) by simulation or radiation

T e c : , 22
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

bl slacosgams

« Testing can show the presence of errors, but not their absence
(exhaustive testing viable only for trivial systems)

0 Representativeness of test cases/injected faults is subjective
How to test for the unexpected? Rare cases?

o Testing is labor intensive, hence expensive

T e _ : , 23
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

GA-MJ) %‘U :M uﬁ«e‘[ﬁ)‘"’

A Sorting Program:

int* sort(int* a) —

Testing sort: Typically missed test cases
Q .sort(-3,2,5")==-2,3,5" / o sort(—2,1,2") ==-1,2,2" X
0 .S —") == "

sort(—") v Jd . sort(null) == exception X
J4 sort(-17") ==-17" / Jd . isPermutation(sort(a),a) X

3 T qe - c . . o , 24
e dlg cdwlolyl o Kisls S5 0 gre 250 1 oLl S38le 5 cwdige 40 commy S gyt)

dad OL3l lgie a4 oy 0l

*6 o0

Theorem (Correctness of sort())

For any given non-null int array a, calling the program sort(a) returns an int
array that is sorted wrt < and is a permutation of a.

However, methodology differs from mathematics:

1. Formalize the expected property in a logical language

2. Prove the property with the help of an (semi-)automatic tool

T e _ : , 25
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

*6 o0 *

oy S U b olate ioles]

Testing Checks Only the Values We Select Formal Verification Checks Every Possible Value!

s e P
::: wﬁ-‘- S " % - q_:":’ ' 'ﬁ
ut S
Bt e S o
= i
{ : = i ".?P:’
..ﬁ: = 1 s % *
Even Small Systems Have Trillions Finds every exception to the
(of Trillions) of Possible Tests! property being checked!

T qe - c . S . 26
e dlg cdwlolyl o Kisls S5 0 gre 250 1 oLl J3Ble 5w 0 cowsy SlB gy Ly

G (5 L‘buf’a)

Rigorous techniques and tools for the development and analysis of
computational (hardware/software) systems

0 Applied at various stages of the development cycle

0 Also used in reverse engineering to model and analyze existing
systems

0 Based on mathematics and symbolic logic (formal)

T e _ : , 27
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

oy gy yo el slacuos>ge

1. System requirements
2. System implementation

Formal methods rely on
a. some formal specification of (1)
b. ~ some formal execution model of (2)

Use tools to verify mechanically that implementation satisfies (a)
according to (b)

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

28

g

d

a

Mathematical modeling and analysis contribute to the overall
quality of the final product

Increase confidence in the correctness/robustness/security
of a system

Find more flaws and earlier (i.e., during specification and
design vs. testing and maintenance)

T 1€ o - s . 29
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

Relative cost to fix an error, by development phase

160
140
120
100
80 1
60
40
20 1

Req Dsn Code uT IT ST AT Ops

Finding errors earlier reduces development costs

s aly oDl oKzl S5 0 gre 250 1 oLl S38le 5 cwdige 40 commy S gyt)

Complement other analysis and design methods

Help find bugs in code and specification
Reduce development, and testing, cost
Ensure certain properties of the formal system model

Should be highly automated

T e c : , 31
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

olejl g (somsy sla b,
2 Run the system at chosen inputs and observe its behavior

= Randomly chosen
= Intelligently chosen (by hand: expensive!)
= Automatically chosen (need formalized spec)

2 What about other inputs? (test coverage)
0 What about the observation? (test oracle)

Challenges can be addressed by/require formal methods

T e c : , 32
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

s

The notion of “formality” is often misunderstood (formal vs. rigorous)
The effectiveness of formal methods is still debated

There are persistent myths about their practicality and cost

Formal methods are not yet widespread in industry

They are mostly used in the development of safety, business, or
mission critical software, where the cost of faults is high

T e _ : . 33
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

S (| ooy Slosig,y ool 4G

To show “correctness” of entire systems
= What is correctness? Go for specific properties!

To replace testing entirely
= Formal methods do not go below byte code level
= Some properties are not formalizable

To replace good design practices

There is no silver bullet!
No correct system w/o clear requirements & good design

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

34

U

O 000000

oy sl gy sl eolanl IST bl e

Forces developers to think systematically about issues
Improves the quality of specifications, even without formal

verification

Leads to better design

Provides a precise reference to check requirements against
Provides documentation within a team of developers

Gives direction to latter development phases

Provides a basis for reuse via specification matching

Can replace (infinitely) many test cases

Facilitates automatic test case generation

T e _ : . 35
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

a2 aloul Wb et az0] 1 Slasuin

0 Simple properties
= Safety properties: something bad will never happen
= Liveness properties: something good will happen eventually
= Non-functional properties: runtime, memory, usability, . . .

o “Complete” behaviour specification
= Equivalence check
= Refinement
= Data consistency

T e _ : . 36
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

) &:Jl :’ B

The expression in some formal language and at some level
of abstraction of a collection of properties that some
system should satisfy [van Lamsweerde]

o formal language:
= syntax can be mechanically processed and checked
= semantics is defined unambiguously by mathematical means

0 abstraction:
= above the level of source code
= several levels possible

T e _ : . 37
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

) Q:Jl :’ B

The expression in some formal language and at some level of
abstraction of a collection of properties that some system should
saftisfy [van Lamsweerde]

O properties:
= expressed in some formal logic
= have a well-defined semantics

0 satisfaction:
= deally (but not always) decided mechanically
= based on automated deduction and/or model checking techniques

T 1€ o - s . 38
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

« Formalisation of system requirements is hard

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

39

oy sl e Sloey) IS i

o A ‘sa)l..»blﬂ olXislo

S5 0 gre 250 1 oLl

Abstraction

Formal
Execution Model

Formal
Requirements
Specification

)‘}é‘l")'; (SR) (o) GL“’ui’ﬁ) P oee

40

oy e sl EMS e

wrong assumption
e.g. zero delay

Formal
Execution Model
missing requirement

e.g. stack overflow

Formal
Requirements

misunderstood problem er ue
isunders P Specification

e.g. wrong integer mode

- _ , , 41
e dlg cdwlolyl o Kisls 355 0 gm0 550 1 ol J3Ble 5w 0 cowsy SlB gy Ly

* Proving properties of systems can be hard

T e c : , 42
e dlg cdwlolyl o Kisls S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

High level (modeling/programming language level)

0 Complex datatypes and control structures, general programs
= General properties

0 Easier to program
= High precision, tight modeling

0 Automatic proofs (in general) impossible!

Low level (machine level)
o Finitely many states
= Finitely many cases
0 Tedious to program, worse to maintain
= Approximation, low precision
0 Automatic proofs are (in principle) possible

- _ , ' 43
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

°J‘-;-.’.~‘ 9 g}*‘g LSLQJ"@)

Slowly but surely formal methods are finding increased used in industry.
o Designing for formal verification
0 Combining semi-automatic methods with SAT/SMT solvers, theorem provers

0 Combining static analysis of programs with
automatic methods and with theorem provers

0 Combining test and formal verification

0 Integration of formal methods into SW development process

T e _ : . 44
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

°J‘-;-.’.~‘ 9 g}*‘g LSLQJ"@)

Need for secure systems is increasing the use of FMs

0 Security is intrinsically hard

0 Redundant fault-tolerant systems are often used to meet safety requirements
0 Fault-tolerance depends on the independence of component failures

0 Security attacks are intelligent, coordinated and malicious

0 Formal methods provides a systematic way to meet strict security
requirements

- _ , ' 45
e dlg cdwlolyl o Kisls S g 5SS s ol S38le 5 cwdige 40 commy S gyt)

oM

o Software is becoming pervasive and very complex
0 Current development techniques are inadequate

o Formal methods . . .
= are not a panacea, but will be increasingly necessary
= are (more and more) used in practice
= can shorten development time
= can push the limits of feasible complexity
= can increase product quality
= can improve system security

o We will learn to use several different formal methods, for different
development stages

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

46

2 Haniel Barbosa from uiowa university

a TA: Parisa Akhbari

s aly oDl oKzl S50 gre i8S 1 ol S38le 5 cwdige 40 commy S gyt)

47

