27 IPI)'/'T;}' ly

/l/'.I r/.‘yffr:‘j/) rf

A r/"y:‘/' Tz‘}.’.

%f’ ;)/:)(/l (l:



The Increased Emphasis on
Testing

* Philosophy of traditional software development
methods

_Upfront analysis
__Extensive modeling
_Reveal problems as early as possible

More work must be revised

to

Original Revision

JERUCRNCE ‘sa)l.wb\ﬂ oKl S 80 gre 5SS 1 sl S8l ey ygeyl s Ly



Traditional Assumptions

1. Modeling and analysis can identify potential problems
early in development

2. Savings implied by the cost-of-change curve justify the
cost of modeling and analysis over the life of the project

* These are true if requirements are always complete and
current

» But those annoying customers keep changing their minds!
_Humans are naturally good at approximating
_But pretty bad at perfecting

* These two assumptions have made software engineering
frustrating and difficult for decades

Thus, agile methods ...

).)).».’ 47‘9 GQ)L»‘O‘)T oli&.;‘o ;)SQMJJSQ : albewl )‘)3‘ [0)4 ug.,o)] : u,u)O 3



Why Be Agile ?

« Agile methods start by recognizing that neither assumption is
valid for many current software projects

— Software engineers are not good at developing requirements

— We do not anticipate many changes

— Many of the changes we do anticipate are not needed
* Reqguirements (and other “non-executable artifacts”) tend to go

out of date very quickly

— We seldom take time to update them

— Many current software projects change continuously
« Agile methods expect software to start small and evolve over

time

— Embraces software evolution instead of fighting it

JERUCRNCE Go){.wb‘)‘] oKl S 80 gre 5SS 1 sl J58l ey Qﬁ.oﬂ ERPR 4



Supporting Evolutionary Design

Traditional design advice says to anticipate changes
Designers often anticipate changes that don’t happen

Anticipated
Change
Anticipated

change that EVOIVIng

doesn’t Design

happen

Unanticipated
Change

3 axly Ga)l.»lolﬂ oKl 35 5 0 gm0 S0 1 ol L1580 o Qyojl Doy 5




The Test Harness as Guardian (4.2)

What is Correctness ?

Traditional Correctness Agile Correctness
(Universal) (Existential)
VXy,X=2y

{ (1,1)>T
(1,0)> T
(0,1)=>F

(10,5)> T
(10, 12) > F }

JERUCRNCE Go)l.w\olﬂ olZisls S 80 gre 258 1 ol Ll58] o QBA}T ERPR 6



A Limited View of Correctness

 In traditional methods, we try to define all correct behavior
completely, at the beginning
_What is correctness?
_Does “correctness” mean anything in large engineering products?
__People are VERY BAD at completely defining correctness
« In agile methods, we redefine correctness to be relative to a
specific set of tests
_If the software behaves correctly on the tests, it is “correct”

_Instead of defining all behaviors, we demonstrate some behaviors
_Mathematicians may be disappointed at the lack of completeness

But software engineers aren't mathematicians!

JERUCRNCE ‘SA)Lulo!ﬂ oKl S 80 gre 5SS 1 sl J58l ey Qﬁ.oﬂ ERPR !



Test Harnesses Verify Correctness

A test harness runs all automated tests efficiently and
reports results to the developers

Tests must be automated
_Test automation is a prerequisite to test driven
development

Every test must include a test oracle that can evaluate
whether that test executed correctly

The tests replace the requirements
Tests must be high quality and must run quickly

We run tests every time we make a change to the
software

JERUCRNCE ‘SA)L«»‘Q‘)‘] oKl S 80 gre 5SS 1 sl S8l ey ygeyl s Ly




Continuous Integration

Agile methods work best when the current version of the
software can be run against all tests at any time

A continuous integration server rebuilds the system,
returns, and reverifies tests whenever any update Is
checked into the repository

Mistakes are caught earlier

Other developers are aware of changes early

The rebuild and reverify must happen as soon as possible
Thus, tests need to execute quickly

A continuous integration server doesn’t just run tests, it
decides if a modified system is still correct

e aly (odllol;] olKzsls S 80 gre 5SS 1 sl S8l e 5 gel s o d



Continuous Integration
Reduces Risk

z

/]

Non-integrated functionality is dangerous!

JERUCRNCE ‘so){.w‘o‘)‘] oKl S 80 gre 5SS 1 sl S8l ey ygeyl s Ly

10



System Tests in Agile Methods

Traditional testers often design system
tests from requirements

Requiremer.ts

Requirzments

System
tests

But ... what if there are no traditional
requirements documents ?

Requircments

JERUCRNCE ‘SA)L«:L)‘)'T oKl S 80 gre 5SS 1 sl J58l ey QBA}T ERPR 1



User Stories

A user story is a few sentences that captures what a user
will do with the software

Withdraw money from Agent sees a list of today’s
checking account interview applicants

Support technician sees
customer’s history on
demand

In the language of the end user
Usually small in scale with few details
Not archived

JERUCRNCE ‘_@uom oKl S 80 gre 5SS 1 sl J58l ey Qg.oﬂ ERPR 12




Acceptance Tests in Agile Methods

Acceptance
Test

(Failing)

software &

. Refactor
Acceptance archived
TeSt Continue adding

(Passing) TDD tests until TDD
acceptance test
passes

Test 2

software & Refactoring avoids

Refactor maintenance debt

JERUCRNCE Ga)L»b\ﬂ oKl S 80 gre 5SS 1 sl Ll58] o QBA}T ERPR 13



Adding Tests to Existing Systems

* Most of today’s software is legacy
_No legacy tests
_Legacy requirements hopelessly outdated
_Designs, if they were ever written down, lost

« Companies sometimes choose not to change software
out of fear of failure

How to apply TDD to legacy software with no
tests?

« Create an entire new test set? — too expensive!
« Give up? — a mixed project iIs unmanageable

JERUCRNCE ‘SA)L«»‘Q‘)‘] oKl S 80 gre 5SS 1 sl S8l ey ygeyl s Ly

14



Incremental TDD
Test-Driven Development

 When a change is made, add TDD tests for just that
change

Refactor

» As the project proceeds, the collection of TDD tests
continues to grow

« Eventually, the software will have strong TDD tests

JERUCRNCE ‘so)l.w\olﬂ olZisls S 80 gre 258 1 ol S8l ey ygeyl s Ly

15



The Testing Shortfall

Do TDD tests (acceptance or otherwise) test the software
well?

_Do the tests achieve good coverage on the code?
_Do the tests find most of the faults?

_If the software passes, should management feel
confident the software is reliable?

NO!

JERUCRNCE ‘so)l.w‘o‘)"‘ olZisls S 80 gre 258 1 ol J58l ey QBA}T ERPR 16



Why Not?

« Most agile tests focus on “happy paths”
_What should happen under normal use
« They often miss things like
_Confused-user paths
_Creative-user paths
_Malicious-user paths

The agile methods literature does not give much
guidance

e dly codllolsl oKl 55 0 g 5SS ol 38l e ygesl s pyo

17



What Should Testers Do?

3 axly GA)LubI)'T olZisls 35,5 0 gm0 S0 ol L1580 o Ol s ey

18



Design Good Tests

Use a human-based approach

Create additional user stories that
describe non-happy paths

How do you know when you're finished?
Some people are very good at this, some
are bad, and it’s hard to teach

Use modeling and criteria

Model the input domain to design tests
Model software behavior with graphs,
logic, or grammars

A built-in sense of completion

Much easier to teach—engineering
Requires discrete math knowledge

Part 2 of
book ...

JERUCRNCE so)Lw\ole olZisls S 80 gre 258 1 ol Ll58] o QBA}T ERPR 19



Summary

More companies are putting testing first

This can dramatically decrease costs and increase the
quality

A different view of “correctness”

_Restricted but practical

Embraces evolutionary design

TDD is definitely not tested automation

_Test automation is a prerequisite to TDD

Agile tests aren’t enough

JERUCRNCE ‘sn)l.w\olﬂ olZislos S 80 gre 258 1 ol S8l ey ygeyl s Ly

20



