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Deep Sequence Modelling

Given an image of a ball,
can you predict where it will go next!?
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Deep Sequence Modelling

Given an image of a ball,
can you predict where it will go next?
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Deep Sequence Modelling

Given an image of a ball,
can you predict where it will go next!?
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Sequences in the Wiid

Audio
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Sequences in the Wild

TATTCTACTTN
TTCCCGARNTACS
DGAGATRRGRRECT
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Sequence Modeling Applications

X

One to One
Binary Classification

=P

“Will | pass this class?"
Student = Pass?

s dly edlslT olKzsls

I 11

Many to One
Sentiment Classification
’ harﬂa?ﬁnnrn
The @MIT Introduction to #Deeplearning is

definitely one of the best courses of its kind
currently available online

introtodeeplearning.com
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Many to Many

One to Many
Machine Translation

Image Captioning

"“A baseball player throws a ball.”

S 80 gre 5SS 1 oLl Guos (6 S0l oy



Neurons with Recurrence

Neurons with Recurrence
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The Perception Revisited
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Feed-Forward Networks

Revisited
)
5 5)(1)
2D
» 5‘,(2)
e)
> 5‘,(3)
£ (™)
pj;(n)
=
x € R™ y € R"
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Feed-Forward Networks

Revisited
S &
X¢ > —>
-/
X, € R™ Yy, € R"
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Handling Individual Time Steps

output
vector

Ve

I

|

|

input
vector

T

Xt

s dly edlslT olKzsls

.
R &
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Neurons with Recurrence

output ¢ Yo V1 Y2

o | | I

input

vector Xt X0 X1 X2
Ve = f(xe, he—1)
output input  past memory
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Neurons with Recurrence

output = Y Yo Y1 Y2
A

vector

= @3- 7-00

T T I T

input

vector Xt X0 X1 Xo
Ve = f(x¢, he—q)
output input  past memory

S ool LT olRails 5SS g 5 ol ot S5l ey 15



Recurrent Neural Networks
(RNNs)

Recurrent Neural Networks (RNNs)

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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Recurrent Neural Networks
(RNNs)

output vector ?t Apply a recurrence relation at every
. time step to process a sequence:

he|= |fw (Ixt ’ rht—l)

RNN cell state function input old state
ht with weights

I w
Note: the same function and set of
input vector X parameters are used at every time step

RNNs have a state, h;, that is updated at each time step as a sequence is processed

S ool LT olRails 5SS g 5 ol ot S5l ey 17



RNN Intuition

my_rnn — RNN() output vector

hidden state = [0, 0, 0, 0]

sentence ["I", "love", "recurrent", "neural"]

for word sentence: RN N

prediction, hidden state - my rnn(word, hidden state)

recurrent cell
next word prediction - prediction

input vector

s g codlwlol;T slKasls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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RNN Intuition

my rnn RNN( )

output vector
hidden state = [0, 0, 0, 0]

sentence ["I", "love", "recurrent", "neural"]

for word sentence: RN N

prediction, hidden state -~ my rnn(word, hidden state)

recurrent cell

next word prediction - prediction

input vector
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RNN Intuition

my_rnn ~ RNN() output vector
hidden state = [0, 0, 0, 0]

sentence ["I", "love", "recurrent", "neural"]

for word sentence: RN N

prediction, hidden state -~ my rnn(word, hidden state)

recurrent cell
next word prediction - prediction

input vector

s g codlwlol;T slKasls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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RNN State Update and Output

output vector ?t
r'y

RNN

I

input vector xt

hy

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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RNN State Update and Output

output vector ?t

7
RNN h,
x Input Vector
input vector Xt xt

S ool LT olRails 5SS g 5 ol ot S5l ey 22



RNN State Update and Output

output vector )’}t
r'y

Update Hidden State

CHAN he h, = tanh(W}phe—q + Wipx,)

I Input Vector
input vector X¢ xt

S ool LT olRails 5SS g 5 ol ot S5l ey 23



RNN State Update and Output

Output Vector
s — wT
Y Whyht

output vector ?t
r'y

Update Hidden State

el he he = tanh(Whphe_q + Wipxe)

I Input Vector
input vector xt xt
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RNNs: Computational Graph
Across Time

L[ RNN ]J —  Represent as computational graph unrolled across time
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RNNs: Computational Graph
Across Time

- Forward pass
Re-use theSame weightfatrices at eery tirge step

Ly L, L, Ly
t t ¢ t
Ve Yo 91 V2 Ve

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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RNNs from Scratch

RNNs from Scratch

class MyRNNCell(tf.keras.layers.Layer):
def _ init_ (self, rnn_units, input_dim, output_dim):
super (MyRNNCell, self).__init__ ()
output vector

self W_xh - self add_weight([rnn_units, input_dim])
self W_hh self add weight([rnn _units, rnn _units])

self W_hy self. add weight([output _dim, rnn units])

self.h - tf.zeros([rnn_units, 1]) RN N

def call(self, x): recurrent cell

self.h tf.math.tanh( self.W_hh self.h self . W_xh
output self W_hy self . h

input vector

return output, self.h

1 azlg b.aumj olisls S 80 gre 5SS 1 oLl




RNN Implementation in
TensorFlow

RNN Implementation in TensorFlow 1F

output vector @

A

tf . keras.layers.SimpleRNN(rnn units)

)
recurrent cell

input vector

s g codlwlol;T slKasls S 80 gre 5SS 1 oLl Guos (6 S0l oy




RNN for Sequence Modeling

¥
I A A
X
One to One Many to One One to Many
“Vanilla" NN Sentiment Classification Text Generation
nary classification Image Captioning

s dly edlslT olKzsls 35,5050 S0 1 ol

Geos S0kt ey

Many to Many
Translation & Forecasting
Music Generation

29



Sequence Modeling: Design
Criteria

To model sequences, we need to:
A

|. Handle variable-length sequences

2. Track long-term dependencies RNN }

3. Maintain information about order I

4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet
these sequence modeling design criteria

S ool LT olRails 5SS g 5 ol ot S5l ey 30



A Sequence Modeling Problem:
Predict the Next Word

A Sequence Modeling Problem:

Predict the Next Word
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A Sequence Modeling Problem:
Predict the Next Word

“This morning | took my cat for a walk.”
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A Sequence Modeling Problem:
Predict the Next Word

“This morning | took my cat for a walk.”

given these words
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A Sequence Modeling Problem:
Predict the Next Word

“This morning | took my cat for a walk.”

given these words predict the
next word
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A Sequence Modeling Problem:
Predict the Next Word

“This morning | took my cat for a walk.”

given these words predict the
next word

Representing Language to a Neural Network

0.1 0.9
>< “deep” “learning” V [0_8] [0_2]
0.6 04

Neural networks cannot interpret words Neural networks require numerical inputs

S ool LT olRails 5SS g 5 ol ot S5l ey 35



Encoding Language for a Neural
Network

X “deep” *—D* “learning”

Neural networks cannot interpret words

Vo= B

Neural networks require numerical inputs

Embedding: transform indexes into a vector of fixed size.

h G A ( g
thie cat o o | One-hot embedding i Learned embedding
took cat —> 2 “cat"=[0,1,00,00] | . [ %8 cat
| walk 4 | >
i | wak —» N - | day l
morning i-th index , sun
. S . 1
|. Vocabulary: 2. Indexing: 3. Embedding:
Corpus of words Word to index Index to fixed-sized vector
s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy 36




Handle Variable Sequence
Lengths

The food was great

VS.

We visited a restaurant for lunch

VS.

We were hungry but cleaned the house before eating

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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Model Long-Term Dependencies

"France is where | grew up, but | now live in Boston. | speak fluent ___.

‘gj’aime 6.519 I!%.

We need information from the distant past to accurately
predict the correct word.

S ool LT olRails 5SS g 5 ol ot S5l ey 38



Capture Differences in
Sequence Order

-

.‘ The food was good, not bad at all.
AR
—

VS.

The food was bad, not good at all. %ﬁ

S ool LT olRails 5SS g 5 ol ot S5l ey 39



Sequence Modeling: Design
Criteria

To model sequences, we need to:

ﬁ
|. Handle variable-length sequences
2. Track long-term dependencies RNN }
3. Maintain information about order I

4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet
these sequence modeling design criteria

S ool LT olRails 5SS g 5 ol ot S5l ey 40



Back Propagation Through
Time (BPTT)

Backpropagation Through Time (BPTT)

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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Recall: Backpropagation in
Feed Forward Models

y A
Backpropagation algorithm:
|.  Take the derivative (gradient) of the
loss with respect to each parameter
2. Shift parameters in order to
minimize loss
X v

S ool LT olRails 5SS g 5 ol ot S5l ey 42



RNNs: Backpropagation
Through Time

= Forward pass L
—

Lo Ly L,
t t t
Ve Yo Y1 y2

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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RNNs: Backpropagation
Through Time

- Forward pass
< Backward pass _ - L :

Ly L, L, Ly
t) ty t) t)
Ve Yo Y1 Y2 Ve
S | I | I ]|
L[ RNN ]J T [ Whn ) Whn Whn
1 W | W | W | W |
Xt X0 X1 X2 Xt
e
44
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Standard RNN Gradient Flow

e

X0 X1 X2 "a Xt

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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Standard RNN Gradient Flow

r 3

Whn Whn Whn

Computing the gradient wrt hg involves many factors of W}, + repeated gradient computation!

S ool LT olRails 5SS g 5 ol ot S5l ey 46



Standard RNN Gradient Flow:
Exploding Gradients

b - i
- - -
» » »
0 i ] y t

th wxh wxh wxh

xo x]_ xz I xt

Computing the gradient wrt hg involves many factors of Wy, + repeated gradient computation!

4 )

Many values > |:
exploding gradients

Gradient clipping to
scale big gradients

A

S ool LT olRails 5SS g 5 ol ot S5l ey 47



Standard RNN Gradient Flow:
Vanishing Gradients

PN
0 Whn Whp Whn t
wxh wxh wxh th
X0 X1 X2 . Xt

Computing the gradient wrt hj involves many factors of Wy,;, + repeated gradient computation!

4 Many values < |: N
vanishing gradients
I. Activation function
2. Weight initialization
\3' Network architecture )

S ool LT olRails 5SS g 5 ol ot S5l ey 48



The Problem of Long-Term
Dependencies

Why are vanishing gradients a problem?

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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The Problem of Long-Term
Dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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The Problem of Long-Term

Dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

|

Errors due to further back time steps
have smaller and smaller gradients

s dly edlslT olKzsls 35,5050 S0 1 ol

Geos S0kt ey
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The Problem of Long-Term

Dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

1

Errors due to further back time steps
have smaller and smaller gradients

l

Bias parameters to capture short-term
dependencies

s dly edlslT olKzsls 35,5050 S0 1 ol

Geos S0kt ey
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The Problem of Long-Term
Dependencies

“The clouds are in the __"
Why are vanishing gradients a problem?

Multiply many small numbers together

l

Errors due to further back time steps
have smaller and smaller gradients

l

Bias parameters to capture short-term
dependencies

S ool LT olRails 5SS g 5 ol ot S5l ey >3



The Problem of Long-Term
Dependencies

“The clouds are inthe _"
Why are vanishing gradients a problem?

tot 1 t
Multiply many small numbers together [ H H H H ]
l f 1 f
. @ X2 X3 X4
Errors due to further back time steps

have smaller and smaller gradients

l

Bias parameters to capture short-term
dependencies

S ool LT olRails 5SS g 5 ol ot S5l ey >4



The Problem of Long-Term
Dependencies

“The clouds are in the ___ "

9 9 9%

Fo
- t t t t
Multiply many small numbers together
1 S W S
@ X2 X3 X4

“l grew up in France, ... and | speak fluent___ "

Why are vanishing gradients a problem?

Errors due to further back time steps
have smaller and smaller gradients

1

Bias parameters to capture short-term
dependencies

S oty OulolT olails  F S gaan 25 ¢ sl EVPIPIN NI >3



The Problem of Long-Term
Dependencies

“The clouds are inthe _"

9, % 9%

Why are vanishing gradients a problem?

Fo
- t t t t
Multiply many small numbers together
1 - | f - t H f

: X2 X3 X4
Errors due to further back time steps
have smaller and smaller gradients “| grew up in France, ... and | speak fluent___"

| poow e @

Bias parameters to capture short-term { ] {

dependencies [ H ] 5 5

S ool LT olRails 5SS g 5 ol ot S5l ey >6



Trick #1: Activation Functions

10 RelLU derivative
07 Using ReLU prevents
- f'from shrinking the

- gradients when x > 0

04

03

0.2
. /\ ~ sigmoid derivative
Oo/ K

-4 -2 0 2 4

S oty OulolT olails  F S gaan 25 ¢ sl EVPIPIN NI >7



Trick #2: Parameter

Initialization
1 0 O 0
Initiali ights to identi tri 010 0
nitialize weig o identity matrix = 00 1 0
Initialize biases to zero L
0O 0 O 1

This helps prevent the weights from shrinking to zero.

S ool LT olRails 5SS g 5 ol ot S5l ey >8



Solution #3: Gated Cells

|dea: use a more complex recurrent unit with gates to
control what information is passed through

e )

gated cell
LSTM, GRU, etc.

\ J

Long Short Term Memory (LSTMs) networks rely on a gated cell to
track information throughout many time steps.

S ool LT olRails 5SS g 5 ol ot S5l ey >9



Long Short Term Memory
(LSTMs) Networks

Long Short Term Memory (LSTM) Networks

S ool LT olRails 5SS g 5 ol ot S5l ey 60



Standard RNN

In a standard RN, repeating modules contain a simple computation node

YVt
|
= D
- 4
Xt

S ool LT olRails 5SS g 5 ol ot S5l ey 61



Long Short Term Memory
(LSTMs)

LSTM modules contain computational blocks that control information flow

LSTM cells are able to track information throughout many timesteps

lF tf. keras.layers.LSTM(num units)

S ool LT olRails 5SS g 5 ol ot S5l ey 62



Long Short Term Memory
(LSTMs)

Information is added or removed through structures called gates

X
o

Gates optionally let information through, for example via a
sigmoid neural net layer and pointwise multiplication

S ool LT olRails 5SS g 5 ol ot S5l ey 63



Long Short Term Memory
(LSTMs)

How do LSTMs work?
|) Forget 2) Store 3) Update 4) Output

Yt
a2 N
Ct—1 —(X) P , » Ct
tanh
ft
e LG m,th[c;Ili .

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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Long Short Term Memory
(LSTMs)

|) Forget 2) Store 3) Update 4) Output
LSTMs forget irrelevant parts of the previous state

S ool LT olRails 5SS g 5 ol ot S5l ey 65



Long Short Term Memory
(LSTMs)

|) Forget 2) Store 3) Update 4) Output
LSTMs store relevant new information into the cell state

S ool LT olRails 5SS g 5 ol ot S5l ey 66



Long Short Term Memory
(LSTMs)

|) Forget 2) Store 3) Update 4) Output
LSTMs selectively update cell state values

S ool LT olRails 5SS g 5 ol ot S5l ey 67



Long Short Term Memory
(LSTMs)

|) Forget 2) Store 3) Update 4) Output

The output gate controls what information is sent to the next time step
Xt

he_y > It
Xt

S ool LT olRails 5SS g 5 ol ot S5l ey 68



Long Short Term Memory

(LSTMs)
|) Forget 2) Store 3) Update 4) Output
Yt
7
Ct—1 Cfx\ > Ct
fe
he_q \[ "r A > Ny
Xt

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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LSTM Gradient Flow

Uninterrupted gradient flow!

-
Y1 Y2
4 %
co ([ A ¢ & A C3
; & o T o—- @~ T >
_ tanh tanh
® X X X
(o] tanh | (o] (g tanh | (o]
\ y T 4 a
X1 X2 X3
70
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LSTMs: Key Concepts

|. Maintain a separate cell state from what is outputted

2. Use gates to control the flow of information
* Forget gate gets rid of irrelevant information
* Store relevant information from current input
* Selectively update cell state

* Output gate returns a filtered version of the cell state

3. Backpropagation through time with uninterrupted gradient flow
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RNN Applications

RNN Applications

s dly edlslT olKzsls

S 80 gre 5SS 1 oLl

Geos S0kt ey
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Example Task: Music
Generation

Input: sheet music

F# G C A
Output: next character in sheet music
Listeniga to l
3rd no.:ment
E F# G C

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy
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Example Task: Sentiment
Classification

sentiment
<positive>
Input: sequence of words
Output:  probability of having positive sentiment
IF loss = tf .nn.softmax cross entropy with logits(y, predicted)
love this class!
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Example Task: Sentiment
Classification

sentiment Tweet sentiment classification
<positive>

_h Ivar Hagendoorn Followl '

The @MIT Introduction to #Deeplearning is
definitely one of the best courses of its kind
currently available online
introtodeeplearning.com

-+. Angels-Cave -

» -

| wouldn’t mind a bit of snow right now. We
haven’t had any in my bit of the Midlands this

: winter! :
love this class! (

S oty OulolT olails  F S gaan 25 ¢ sl EVPIPIN NI 3



Example Task: Machine
Translation

le chien mange

SR S

the dog eats le chien

Encoder (English) Decoder (French)

s dly edlslT olKzsls S 80 gre 5SS 1 oLl Guos (6 S0l oy



Example Task: Machine
Translation

Potential Issues

| hi
Y Encoding bottleneck c chien mange

Rt

the dog eats le chien

Encoder (English) Decoder (French)
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Example Task: Machine
Translation

Potential Issues

| hi
Y Encoding bottleneck © i

*) Slow, no parallelization

dog eats le chien

Encoder (English) Decoder (French)
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Example Task: Machine
Translation

Potential Issues

| hi
Y Encoding bottleneck e ghien mange

*) Slow, no parallelization
“2 Not long memory I \ : \ i

the dog eats le chien
Encoder (English) Decoder (French)
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Example Task: Machine
Translation

le chien mange
Attention mechanisms in neural networks
provide learnable memory access
Attention
the dog eats
Encoder (English) Decoder (French)

S ool LT olRails 5SS g 5 ol ot S5l ey 80



Application: Trajectory
Prediction for Self-Driving Cars

1 azlg Ga)l.wb!ﬂ oKidls S50 g 55 ¢ ol



Application: Environmental
modeling

) “\‘\“.f' .\
A
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Deep Learning for Sequence
Modeling: Summary

|. RNNSs are well suited for sequence modeling tasks
Model sequences via a recurrence relation
Training RNINs with backpropagation through time

Gated cells like LSTMs let us model long-term dependencies

o e e

Models for music generation, classification, machine translation, and more

Jl ! W“' Uﬂh uww Wn AR ,,~.'.smmﬂ_wlﬂmum.h'w.a. L

W Y r“"ﬁnqwm 'Y"' I'""W! '1 vlrm ,'Tw N ,‘-w-!."wmr‘,.{wvwf.vmr‘rrvn-»f.,‘ : hm n
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6.519|: Introduction to Deep Learning

Lab I: Introduction to TensorfFlow and Music Generation with RNNs

Link to download labs:
http://introtodeeplearning.com#schedule

|. Open the lab in Google Colab
2. Start executing code blocks and filling in the #TODOs
3. Need help? Come to the class Gather.Town!

Sl A e L
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