دانسگاه آزاداسلامی واحد سربر نام درس: دادهکاوی مام اساد: دكترمسعود كاركر

Salar III

MASOLITE ARE

2501714 ARGARITE

ARIF GARIF

# Roadmap

- A Game for you!
- What is Decision Tree?
- Information Theory
- How to build Decision Tree
- Summary

### Review of Classification

- Given a set of attributes (X1,X2, ..., Xn) of an object, predict its label/class (C) based on training examples
- Three types of attributes:
  - Numerical/continuous: Domain is ordered and can be represented on the real line (e.g., age, income)
    - (0.3, 0.4, 0.5, ...)
  - Ordinal: Domain is ordered, but absolute differences between values is unknown (e.g., preference scale, severity of an injury)
    - Grade: (A, B, C, D)
  - Nominal or categorical: Domain is a finite set without any natural ordering (e.g., occupation, marital status, race)
    - Color: (red, blue, yellow)

# **Game of Guessing Animal**

- I write dov
- You are ended
   animal to questions
- The winner minimal N
- The tricky what ques



#### **What is Decision Tree?**



## What is Decision Tree?

- They do classification: predict a categorical output from categorical and/or real inputs
- Decision trees are the single most popular data mining tool
  - Easy to understand
  - Easy to implement
  - Easy to use
  - Computationally cheap
- Mature, Easy-to-use software package freely available (used for the assignment 2)
- NO programming needed!

# **What is Decision Tree?**

- Extremely popular method
  - Credit risk assessment
  - Medical diagnosis
  - Market analysis
  - Bioinformatics
  - Chemistry
  - A literature search in pubmed.org retrieves 6906 papers related to decision trees!
- Good at dealing with symbolic feature

## **Decision Tree Representation**



- Each **branch** corresponds to attribute value
- Each internal node has a splitting predicate
- Each leaf node assigns a classification

### **Internal Nodes**

 Each internal node has an associated splitting predicate. Most common are binary predicates.

Example predicates:

- Age <= 20
- Profession in {student, teacher}
- -5000\*Age + 3\*Salary 10000 > 0

### **Internal Nodes: Splitting Predicates**

- Binary Univariate splits:
  - Numerical or ordered X: X <= c, c in dom(X)</p>
  - Categorical X: X in A, A subset dom(X)
- Binary Multivariate splits:
  - Linear combination split on numerical variables:
    - $\sum a_i X_i \le c$
- k-ary (k>2) splits analogous

درس: داده کاوي

#### **Building Decision Tree Classifiers for DELL** to Predict if a customer would buy a computer

#### Training Data

| C-X7             |        |         | $\sim$ $\sim$ $\sim$ | $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ $\sim$ |
|------------------|--------|---------|----------------------|----------------------------------------------------------------|
| <sup>s</sup> age | income | student | credit_rating        | buys_computer                                                  |
| <=30             | high   | no      | fair                 | no                                                             |
| <=30             | high   | no      | excellent            | no                                                             |
| 3140             | high   | no      | fair                 | yes                                                            |
| >40              | medium | no      | fair                 | yes                                                            |
| >40              | low    | yes     | fair                 | yes                                                            |
| >40              | low    | yes     | excellent            | no                                                             |
| 3140             | low    | yes     | excellent            | yes                                                            |
| <=30             | medium | no      | fair                 | no                                                             |
| <=30             | low    | yes     | fair                 | yes                                                            |
| >40              | medium | yes     | fair                 | yes                                                            |
| <=30             | medium | yes     | excellent            | yes                                                            |
| 3140             | medium | no      | excellent            | yes                                                            |
| 3140             | high   | yes     | fair                 | yes                                                            |
| >40              | medium | no      | excellent            | no                                                             |

#### **Output: A Decision Tree for "buys\_computer"**



## **TDIDT Algorithm**

- Also known as ID3 (Quinlan)
- To construct decision tree T from learning set S:
  - If all examples in S belong to some class C Then make leaf labeled C
  - Otherwise
    - select the "most informative" attribute A
    - partition S according to A's values
    - recursively construct subtrees T1, T2, ..., for the subsets of S

#### **Algorithm for Decision Tree Induction**

- Basic algorithm (a greedy algorithm)
  - Tree is constructed in a top-down recursive divide-and-conquer manner
  - At start, all the training examples are at the root
  - Attributes are categorical (if continuous-valued, they are discretized in advance)
  - Examples are partitioned recursively based on selected attributes
  - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
  - All samples for a given node belong to the same class
  - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
  - There are no samples left

### **Design Issues of Decision Trees**



- Which decision tree is
   the best?
- Which attributes to check first? How to split?
  - How to decide the split values of real-value attributes (e.g. age)?
    When to stop splitting?
  - How to evaluate decision trees?

#### **Which Decision Tree is the Best?**

- Occam's razor: (year 1320)
  - Prefer the simplest hypothesis that fits the data.
  - The principle states that the explanation of any phenomenon should make as few assumptions as possible, eliminating those that make no difference in the observable predictions of the explanatory <u>hypothesis</u> or <u>theory</u>
- Albert Einstein: Make everything as simple as possible, but not simpler.
- Why?
  - It's a philosophical problem.
  - Simple explanation/classifiers are more robust
  - Simple classifiers are more understandable

### **How To Build a Simple Decision Tree?: Attribute Selection**

- Intuitively (as in the game):
  - We want to reduce the search space (ambiguity) ASAP by asking each question
- Scientifically:
  - Test attributes that gain most information.
- Remember: The splitting process of decision tree stops only when the labels of all instances in a node becomes pure (homogeneous) except other special cases.

#### **How To Build a Simple Decision Tree**

- Objective: Shorter trees are preferred over larger Trees
- Idea: want attributes that classifies examples well. The best attribute is selected.
- Select attribute which partitions the learning set into subsets as "pure" as possible
- How well an attribute alone classifies the training data?

## **Information Theory**

- Claude E. Shannon's classic paper "A Mathematical Theory of Communication" in the Bell System Technical Journal in July and October of 1948.
- **Key Concepts:** 
  - Entropy, H, of a discrete random variable X is a measure of the amount of *uncertainty* associated with the value of X.
  - Information (Gain): reduction of entropy (uncertainty)
  - **Mutual Information:** measures the amount of information that can be obtained about one random variable by observing another. (can be used for feature selection)

# **Measuring Entropy**

- **Entropy**, H, of a discrete random variable X is a measure of the amount of *uncertainty* associated with the value of X.
  - In our case: the random variable is the class label of an instance (C)
  - For two training data with 10 instances at the root node
  - Data 1: 9 positive, 1 negative
  - Data 2: 5 positive, 5 negative
- For objects of Data 1 and 2, whose label is more uncertain?

$$H(X) = \mathbb{E}_X[I(x)] = -\sum_{x \in \mathbb{X}} p(x) \log p(x)$$

$$H_{\mathbf{b}}(p) = -p \log p - (1-p) \log(1-p).$$

## **Measuring Mutual Information**

measures the amount of information that can be obtained about one random variable by observing another.

$$I(X;Y) = \mathbb{E}_{X,Y}[SI(x,y)] = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

- Exercise: calculate the mutual information between the class label and an attribute
- Mutual information in feature selection:
  - Input Feature Selection by Mutual Information Based on Parzen Windows
  - Mutual information functions versus correlation functions. Journal of Statistical Physics, 2005

# Information Gain (used in ID3)

- What is the uncertainty removed by splitting on the value of A?
- The information gain of S relative to attribute A is the expected reduction in entropy caused by knowing the value of A
  - : the set of examples in S where attribute A has value v

$$G(S,A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} E(S_v)$$

# Play Tennis Example

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

#### Which attribute is the best classifier?





 $Gain(S, Outlook) = 0.246 \quad Gain(S, Humidity) = 0.151$ 

Gain(S, Wind) = 0.048 Gain(S, Temperature) = 0.029



Which attribute should be tested here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$
  
 $Gain (S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$   
 $Gain (S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$   
 $Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$ 

درس : داده کاوی استاد : د کتر مسعود کارگر دانشگاه آزاداسلامی واحد تبریز

25

#### Which attribute is the best classifier?



# Gain Ratio (used in C4.5)

- Limitation of Information Gain
  - Biased towards attributes with many outcomes: not robust
  - Example: suppose an attribute A has 14 distinct values (product\_id), splitting on A, will result maximum information gain. H(Di)=0.
- Gain Ratio: normalization applied to information gain
  - Normalized by the split information (penalize multiple-valued) attributes/splits)
  - J.R. Quinlan (1986). Induction of Decision Trees, Machine Learning, (1), 81-106

$$Gain(A) = \frac{Gain(A)}{\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2}^{\frac{|D_{j}|}{|D|}}}$$

$$SplitInfo(A) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2}^{\frac{|D_{j}|}{|D|}}$$

#### Gini Index (CART, IBM Intelligent Miner)

- Another sensible measure of impurity (i and j are classes)
- a function the maximize when x=y? f=xy given x+y=1

$$Gini = \sum_{i \neq j} p(i)p(j) \qquad or \ 1 - \sum_{i=1}^{\nu} p_i 2$$

After applying attribute A, the resulting Gini index is

$$Gini(A) = \sum_{v} p(v) \sum_{i \neq j} p(i|v) p(j|v)$$

Gini can be interpreted as expected error rate

# **Gini Index**



$$p(\Box) = \frac{9}{14}$$

$$p(\triangle) = \frac{5}{14}$$

$$Gini = \sum_{i \neq j} p(i) p(j)$$

$$Gini = \frac{9}{14} \times \frac{5}{14} = 0.230$$



$$Gini(Color) = \frac{5}{14} \times (\frac{3}{5} \times \frac{2}{5}) + \frac{5}{14} \times (\frac{2}{5} \times \frac{3}{5}) + \frac{4}{14} \times (\frac{4}{4} \times \frac{0}{4}) = 0.171$$

### **Gain of Gini Index**

$$Gini = \frac{9}{14} \times \frac{5}{14} = 0.230$$

$$Gini(Color) = \frac{5}{14} \times (\frac{3}{5} \times \frac{2}{5}) + \frac{5}{14} \times (\frac{2}{5} \times \frac{3}{5}) + \frac{4}{14} \times (\frac{4}{4} \times \frac{0}{4}) = 0.171$$

$$GiniGain(Color) = 0.230 - 0.171 = 0.058$$

#### **Comparing Attribute Selection Measures**

- The three measures, in general, return good results but
  - Information gain:
    - biased towards multivalued attributes
  - Gain ratio:
    - tends to prefer unbalanced splits in which one partition is much smaller than the others
  - Gini index:
    - biased to multivalued attributes
    - has difficulty when # of classes is large
    - · tends to favor tests that result in equal-sized partitions and purity in both partitions

#### **Computing Information-Gain for Continuous-Value Attributes**

- Let attribute A be a continuous-valued attribute
- Must determine the **best split point** for A
  - Sort the value A in increasing order
  - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
    - $(a_i+a_{i+1})/2$  is the midpoint between the values of  $a_i$  and  $a_{i+1}$
  - The point with the *minimum expected information requirement* for A is selected as the split-point for A
- Split:
  - D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point

#### Other Attribute Selection Measures

- CHAID: a popular decision tree algorithm, measure based on  $\chi^2$  test for independence
- C-SEP: performs better than info. gain and gini index in certain cases
- G-statistics: has a close approximation to  $\chi^2$  distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
  - The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
  - CART: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
  - Most give good results, none is significantly superior than others

### **Random Forest**

- random forest is a classifier that consists of many decision trees and outputs the class that is the mode of the classes output by individual trees
  - For many data sets, it produces a highly accurate classifier.
  - It handles a very large number of input variables.
  - It estimates the importance of variables in determining classification.
  - It generates an internal unbiased estimate of the generalization error as the forest building progresses.
  - It includes a good method for estimating missing data and maintains accuracy when a large proportion of the data are missing.
  - It provides an experimental way to detect variable interactions.
  - It can balance error in class population unbalanced data sets.
  - It computes proximities between cases, useful for <u>clustering</u>, detecting outliers, and (by scaling) visualizing the data.
  - Using the above, it can be extended to unlabeled data, leading to unsupervised clustering, outlier detection and data views.
  - Learning is fast.

## **Issues in Decision Tree**

- Overfiting
- Tree Pruning
- Cross-validation
- Model Evaluation
- Advanced Decision Tree
- C4.5 Software Package

### **Summary: Advantages of Decision Trees**

- Simple to understand and interpret. People are able to understand decision tree models after a brief explanation.
- Have value even with little hard data. Important insights can be generated based on experts describing a situation (its alternatives, probabilities, and costs) and their preferences for outcomes.
- Use a white box model. If a given result is provided by a model, the explanation for the result is easily replicated by simple math.
- Can be combined with other decision techniques.

## قدرداني

- Dr. Jianjun Hu
   http://mleg.cse.sc.edu/edu/csce822/
- University of South Carolina
- Department of Computer Science and Engineering